The surprising effects rivers have on our atmosphere

Featured Image: Rio Bermejo meeting up with the Paraguay River, on the boarder of Formosa and Chaco Provinces.  Image by Mapio. Used with permision.

Paper: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection

Authors: Marisa Repasch, Joel S. Scheingross, Niels Hovius, Maarten Lupker, Hella Wittmann, Negar Haghipour, Darren R. Gröcke, Oscar Orfeo, Timothy I. Eglinton, and Dirk Sachse

In our current era of rapid climate change, it is critical we understand how every aspect of the Earth system affects carbon cycling.  New work by Marisa Repasch and colleagues shows that rivers, under the right conditions, might be able to sequester more carbon in the sediments than released into the atmosphere. However, these findings may reveal how human impacts to rivers will likely increase the amount of carbon released to the atmosphere.

Continue reading “The surprising effects rivers have on our atmosphere”

Hunting for phosphorus on early Earth

Featured Image: A sample of the mineral schreibersite, a possible source of meteoric phosphorus. CC-BY 3.0, via Wikimedia commons.

Paper: Phosphorus mineral evolution and prebiotic chemistry: From minerals to microbes

Authors: Craig R. Walton, Oliver Shorttle, Frances E. Jenner, Helen M. Williams, Joshua Golden, Shaunna M. Morrison, Robert T. Downs, Aubrey Zerkle, Robert M. Hazen, Matthew Pasek

With a swift strike, a match bursts into flame. Life, like the flame, burst into existence almost 4 billion years ago, and as with the sparking of the match, phosphorus was a key ingredient. Phosphorus, element 15, is at the center of energy production in cells, forms cell walls, and provides the backbone for DNA.

Continue reading “Hunting for phosphorus on early Earth”

It’s magnetic! Probing the predictability of ancient rainfall using a mountainous ridge of red stone

Featured image: From Fig. 1 in Ao et al. (2021). An image of the Late Oligocene-age red mudstone that is the subject of this study, between bracketing sandstone sections. This mudstone outcrop (known as the Duittingou section) is located in the Lanzhou Basin, China, in the northeastern Tibetan Plateau. Image licensed under CC BY-NC.

Paper: Eccentricity-paced monsoon variability on the northeastern Tibetan Plateau in the Late Oligocene high CO2 world

Authors: Hong Ao, Diederik Liebrand, Mark J. Dekkers, Peng Zhang, Yougui Song, Qingsong Liu, Tara Jonell, Qiang Sun, Xinzhou Li, Xinxia Li, Xiaoke Qiang, Zhisheng An

The intensity and frequency of rainfall affects food supply around the world, the structural integrity of buildings and homes, and flooding in the impermeable “concrete jungles” of cities. However, not much is known about how rainfall has fluctuated naturally in the distant past, making it more difficult for scientists to predict how climate change will affect future precipitation. Recently, an international team of authors addressed a small part of this problem by uncovering how rainfall in Asia changed under different climates far back in time. Their scientific adventure started once they identified a particularly special rock formation in China, where invisible traces of ancient rainfall had been preserved.

Continue reading “It’s magnetic! Probing the predictability of ancient rainfall using a mountainous ridge of red stone”

Do we need new types of geology to understand exoplanets?

Featuring image: White dwarf make perfect natural mass spectrometer, more powerful as any instrument on Earth. Can they help us to learn about exoplanets? NOIRLab/NSF/AURA/J. da Silva, Creative Common (CC BY 4.0)

Paper: Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood

Authors: K. D. Putirka and S. Xu

For a long time, geologist were only able to study rocks on the ground. We extended this knowledge to our neighbouring planets. Now finally, scientist have found a way to study rocks from planets far away, using the light of their host stars. And they look very strange.

Over the last 30 years, exoplanets have evolved from mere theory into a fantastic reality. Today we know that nearly all stars host at least one exoplanet and even exoplanets with an Earth-like mass are relatively common. Still, we know very little about the geology of these worlds. In a new study, Keith Putirka and Siyi Xu were able to observe and compare the mineralogy of exoplanets to that of the rocky planets in the solar system. Surprisingly, these exoplanets exhibit types of mineralogy unlike any we have known before.

Continue reading “Do we need new types of geology to understand exoplanets?”