Are we star dust?

Paper: Amino acid abundances and compositions in iron and stony‐iron meteorites

Authors: Jamie E. Elsila, Natasha M. Johnson, Daniel P. Glavin, José C. Aponte, Jason P. Dworkin

All known life on Earth relies on amino acids. Many important biomolecules like proteins are made up of them. Scientists were surprised when they found these molecules, which are so strongly connected to living systems, in meteorites. How amino acids form in non-biological systems is still not entirely understood and is closely tied to the question of how life emerged on our young planet.

Continue reading “Are we star dust?”

Tiny Crystals, Big Story: Time capsules from the Early Mars

Featured Image: Zircon grain under the Scanning Electron Microscope (SEM). Image used with permission from Wikipedia (Emmanuel Roquette).

Article: The internal structure and geodynamics of Mars inferred from a 4.2-Gyr zircon record.

Authors: Maria M. Costa, Ninna K. Jensen, Laura C. Bouvier, James N. Connelly, Takashi Mikouchi, Matthew S. A. Horstwood, Jussi-Petteri Suuronen, Frédéric Moynier, Zhengbin Deng, Arnaud Agranier, Laure A. J. Martin, Tim E. Johnson, Alexander A. Nemchin, and Martin Bizzarro

While sitting in Geology 101 studying the geological time scale, most of us have gone through this experience where we imagined ourselves going back in time; visualizing mammoths passing by, dinosaurs hunting and fighting. But all these pictures start to become hazy and unclear when we reach close to 4 billion years. It is the time for which we have no rock records, and this is where zircons or what I would like to call “tiny survivors” comes in.

Continue reading “Tiny Crystals, Big Story: Time capsules from the Early Mars”

Capturing Early Sun within meteorite inclusions

Paper: Astronomical context of solar system formation from molybdenum isotopes in meteorite inclusions.

Featured image: Artistic impression of the protoplanetary disk. Image used with permission from Wikipedia (A. Angelich).

Authors: Gregory A. Brennecka, Christoph Burkhardt, Gerrit Budde, Thomas S. Kruijer, Francis Nimmo, Thorsten Kleine.

If you ask a cosmochemist what the oldest objects in the solar system are, they will swiftly answer the Calcium Aluminium Inclusions (CAIs), a small light-coloured inclusion within primitive meteorites known as Chondrites (see figure 2C). However, if you ask what event in the solar system evolution CAIs correspond to, it is a more challenging question. Previously, CAI formation was associated with the various evolutionary stages of our Sun.  However, as the timescale of evolution of Sun, calculated to be around 1 million years by observing Sun like stars, is longer than the CAI forming period (~ 40,000 – 200,000 years), the association between CAI formation and the early stages of our Sun is not always clear. In a quest to put the CAI formation in an astronomical context, a recent study from Brennecka et al. analysed CAIs present within various Carbonaceous chondrite meteorites and linked the CAI formation to a specific stage in the Sun’s evolution.

Continue reading “Capturing Early Sun within meteorite inclusions”

Tracing the origin of Earth’s water with meteorites

Paper: Earth’s water may have been inherited from material similar to enstatite chondrite meteorites

Authors: Laurette Piani, Yves Marrocchi, Thomas Rigaudier, Linel G. Vacher, Dorian Thomassin, Bernard Marty

To date, Earth is the only planetary object known to have extensive bodies of liquid water (H2O) at its surface. Water is fundamental to supporting life as we know it with every single organism on our planet requiring water to survive. Even our own human bodies are made up of 60-70% water. However, the origin of Earth’s water has long been debated.


Continue reading “Tracing the origin of Earth’s water with meteorites”