‘Cacao’ meteorite and other Fe-Ni meteorites on Mars

Featured image: ‘Cacao’ meteorite in Gale crater, Mars – MastCam mosaic comprised of 19 images. Credit: NASA/JPL-Caltech/MSSS.

Paper: Spectral Diversity of Rocks and Soils in Mastcam Observations Along the Curiosity Rover’s Traverse in Gale Crater, Mars

Author: Rice M S et al., (2022)

On the 28th January 2023 NASA’s MSL Curiosity rover team confirmed the rock ‘Cacao’ as an iron-nickle (Fe-Ni) meteorite on the surface of Mars. Curiosity captured images of a silvery-grey rock, very distinctive among the beige-red sedimentary landscape it is currently exploring. Cacao is a ‘float’ rock, meaning is it not embedded within the bedrock and is not where it formed. Float rocks are common on Mars, but many can be traced back to the upper ledges of slopes they have fallen from, or as ejecta from a nearby impact. Cacao has joined a special group of float rocks that are distinct in appearance, genetic composition, and origin.

Continue reading “‘Cacao’ meteorite and other Fe-Ni meteorites on Mars”

From Arizona to Mars: How Impact Craters Have Shaped the Solar System

Featured image: Meteor Crater, located in southwestern United States. Credit: David A. Kring (2017).

Book: Kring, D. (2017) Guidebook to the geology of Barringer Meteorite Crater, Arizona (a.k.a. meteor crater). 2nd edn. LPI Contribution No.2040.

Author: David A. Kring

Impact cratering has been occurring throughout geological time. Earth’s best preserved impact crater lies in Arizona. Barringer Meteorite Crater – or Meteor Crater – formed when an iron meteorite impacted into northern Arizona ~50,000 years ago. Since then, the landscape has seen little erosion, creating a beautifully preserved impact crater. The site can be accessed by tourists only in restricted areas, but the wider crater can be used by select geologists and is used by NASA to train astronauts… and somehow, I found myself there alongside a group of PhD students from across the world.

Continue readingFrom Arizona to Mars: How Impact Craters Have Shaped the Solar System

To understand Mars, scientists study Earth – but is this enough?

Featured Image: Top: Valley of the Moon, Atacama Desert, San Pedro, Chile, Earth.  Image courtesy Alf Igel.  Bottom: Jezero Crater, Syrtis Major Quadrangle, Mars.  Image courtesy Kevin M. Gill.

Paper: Gradient studies reveal the true drivers of extreme life in the Atacama Desert

Authors: D. Boy, R. Moeller, L. Sauheitl, F. Schaarschmidt, S. Rapp, L. van den Brink, S. Gschwendtner, R. Godoy Borquez, Francisco J. Matus, M. A. Horn, G. Guggenberger, J. Boy

Space.  The final frontier.  Or is it?  Boy and colleagues are not presenting the voyages of the Starship Enterprise, rather the clever investigation of scientists on Earth.  Their continuing mission: to understand the development of life in extreme environments, and how certain places on Earth geologically represent Mars and other planet analogues.  While Boy and colleagues are limited on intergalactic travel, their recent work clearly the defines expectations, inferences, and consequences of using a site on Earth as a replacement for another planet.  They conclude that the nearby climate and environment surrounding these analogue locations may lead to inaccurate comparisons, by altering soil moisture and salt content, for example.

Continue reading “To understand Mars, scientists study Earth – but is this enough?”

Martian Past Revealed by New Analysis of 4 Billion-year-old Meteorite

Paper: Organic synthesis associated with serpentinization and carbonation on early Mars

Authors: Steele A, Benning LG, Wirth R, Schreiber A, Araki T, McCubbin FM, Fries MD, Nittler LR, Wang J, Hallis LJ, and Conrad PG.

The discovery of organic carbon in Martian meteorites has fueled scientific debates for more than four decades. Could these molecules be the chemical residue of Martian life?

Continue reading “Martian Past Revealed by New Analysis of 4 Billion-year-old Meteorite”

Ancient Explosive Volcanoes on Mars

Featured image: a mushroom shaped volcanic plume arising from the explosive activity of Redoubt volcano, Alaska in 1990. Credit: R. Clucas.

Paper: Caldera Collapse and Volcanic Resurfacing in Arabia Terra Provide Hints of Vast Under-Recognized Early Martian Volcanism

Authors: Yin Yau Yoyo Chu, Joseph R. Michalski, Shawn P. Wright, A. Alexander G. Webb.

Mars is a planet of extreme highs and lows containing the solar system’s largest volcano – Olympus Mons – and the largest canyon system – Valles Marineris. Tharsis and Elysium, the planet’s two largest volcanic provinces, are young surface features that were built by basaltic volcanism throughout the Amazonian, the most recent geological era on Mars.

Continue reading “Ancient Explosive Volcanoes on Mars”

Mysterious methane on Mars

Featuring image: northern rim of Gale Crater viewed by Curiosity. NASA/JPL-Caltech/MSSS, public domain (CC0)

Paper: Day-night differences in Mars methane suggest nighttime containment at Gale crater

Authors: C. R. Webster, P. R. Mahaffy, J. Pla-Garcia, S. C. R. Rafkin, J. E. Moores, S. K. Atreya, G. J. Flesch, C. A. Malespin, S. M. Teinturier, H. Kalucha, C. L. Smith, D. Viúdez-Moreiras and A. R. Vasavada

Methane is a gas often connected to life on Earth. NASA’s Mars rover reported the detection of methane, but discrepancies with other missions puzzled researchers. Is there methane on Mars or not? A new study tries to answer this question in a windy way.

Methane is a possible biosignature for extraterrestrial life and therefore, one of the goals of the Mars rover Curiosity was to search for methane. Curiosity was able to detect varying amounts of this gas over the years, but the existence of methane in the Martian atmosphere could not be confirmed by analysis from satellites. Now, Christopher Webster and his group were able to explain the variations as well as the discrepancy between ground-based and satellite analysis by developing a detailed model of the wind systems at Gale crater.

Continue reading “Mysterious methane on Mars”

The Search for Life on Mars Begins on Earth

Self portrait of NASA's Curiosity rover. Curiosity is currently climbing Moount Sharp, which can be seen rising on the right-hand side of the image, seeking signs that Mars have been a habitable planet in the past.

Article: Fatty Acid Preservation in Modern and Relict Hot-Spring Deposits in Iceland, with Implications for Organics Detection on Mars

Authors: Williams, Amy J., Kathleen L. Craft, Maëva Millan, Sarah Stewart Johnson, Christine A. Knudson, Marisol Juarez Rivera, Amy C. McAdam, Dominique Tobler, and John Roma Skok.

The quest to find signs of life on Mars is one of the greatest scientific challenges of our time. For some researchers, the quest is a chemical one. A search for the biomolecular remains of life that may have lived when Mars was warmer and wetter billions of years ago. However, finding and recognizing molecular fossils is no easy task, even for a rover as sophisticated as Curiosity. Now, new research from Dr. Amy Williams and her colleagues provides fresh insights into where Mars rovers should look for these fossils, what the signatures may look like, and a simple procedure for how to detect them.

Continue reading “The Search for Life on Mars Begins on Earth”

The only way is… down? Groundwater on Mars could support microbial life in the present day

Featured image: A person exploring the rocks of a cave on Earth, Pixabay.

Paper: Earth-like Habitable Environments in the Subsurface of Mars

Authors: J.D. Tarnas, J.F. Mustard, B. Sherwood Lollar, V. Stamenković, K.M. Cannon, J.-P. Lorand, T.C. Onstott, J.R. Michalski, O. Warr.

Mars exploration has been looking “up” recently: the Ingenuity helicopter performed the first powered flight on another planet, and veteran rover Curiosity gave us stunning images from the top of Mount Mercou. But if we want to look for life on Mars, it might be time for us to look down instead. New research suggests that life on present day Mars could be sustained by chemical energy produced through the interaction between water and rocks deep underground, like it is here on Earth.

Continue reading “The only way is… down? Groundwater on Mars could support microbial life in the present day”

Life on Mars: a non-traditional source for warmer waters

Hydrothermal vent on the right spewing water into a river on the left. Background has trees and sky. From Yellowstone National Park.

Article: Amagmatic hydrothermal systems on Mars from radiogenic heat

Authors: L. Ojha, S. Karunatillake, S. Karimi, and J. Buffo

Many people are familiar with Yellowstone National Park’s famous geyser, Old Faithful – but did you know that the heat fueling Old Faithful’s eruptions are from magma chambers that warm up underground fluids until they shoot out of the ground? Hydrothermal systems like this are found in other places, too, and can be fueled by different kinds of heat sources. In fact, scientists at Rutgers University have recently identified one such heat source – the heat generated by radioactive decay from certain chemical elements – that could help answer questions about whether liquid water, a critical component for life as we know it, could exist on Mars.

Continue reading “Life on Mars: a non-traditional source for warmer waters”

Oxia Planum: ExoMars 2022 Landing Site

Featured Image: Artist’s impression of ESA’s ExoMars rover ‘Rosalind Franklin’ on the surface of Mars. Credit: ESA.

Paper: Oxia Planum: The Landing Site for the ExoMars “Rosalind Franklin” Rover Mission: Geological Context and Prelanding Interpretation

Authors: Quantin-Nataf et al., 2021

We are entering a new dawn of Mars exploration: Perseverance rover touched down on Mars earlier this year, which marks the start of what will be a decade-long effort to return samples from Mars. In 2022 the European Space Agency (ESA) will launch the ExoMars rover, which will team up with the ExoMars Trace Gas Orbiter (TGO) to find evidence of past or present life on Mars.

Continue reading “Oxia Planum: ExoMars 2022 Landing Site”