Pipe Dreams: stories of Bengaluru’s water supply

Featured Image: Raj Bhagatt P (published with permission from the author)

Castán Broto, V., Sudhira, H. and Unnikrishnan, H. (2021), WALK THE PIPELINE: Urban Infrastructure Landscapes in Bengaluru’s Long Twentieth Century. Int. J. Urban Reg. Res., 45: 696-715. https://doi.org/10.1111/1468-2427.12985

Can a pipeline that runs through an urban landscape weave narratives of water usage through space and time? A beautiful article published in the International Journal of Urban and Regional Research captures some of the stories along the oldest pipeline in Bengaluru, South India. The narratives talk of the urban and rural divide, the patterns of urban sprawl, the pre-colonial water management, and the scarcity faced today.

Before the pipeline, Bengaluru relied on an ancient network of seasonally-replenished tanks, reservoirs and open wells for its agrarian water supply. This network was engineered to harness the natural gradients of Bengaluru’s topography, and to ensure water reached different parts of the city. In 1894, the Chamarajendra waterworks laid down the first modern iron pipeline to source water from the Arkavathi river to Bengaluru’s colonial heart – and history was made. Based on old planning records and an analysis of historic maps, this pipeline today can be traced from the low-level reservoir at the heart of Bengaluru, passing through the neighbourhoods of Malleshwaram, Yeshwanthpur, and Dasarahalli, ending at the Hesaraghatta tank at the northwest corner of the city. Throughout history, the pipeline has affected the lives of people and other urban infrastructure along the way, and continues to do so.

Landmarks along the oldest pipeline in Bengaluru today. Image credits: H.S. Sudhira. Image source: https://doi.org/10.1111/1468-2427.12985

In the 1960s, the Bangalore Water Supply and Sewerage Board (BWSSB) was created to meet the demands of the city. Yet with the ever-expanding urban stretches and the burgeoning population, water scarcity is among the major challenges faced by Bengaluru today. Pipelines from Tarabanahalli, and from Shivanasamudra, along with the old one from Hesaraghatta, transfer water from the rural outskirts to the heart of Bengaluru. In addition, groundwater resources and some water from the Arkavathi river is carried by tankers into the city, to supplement the 6,000 public borewells, and roughly 50,000 residential borewells. Despite water conservation efforts like rainwater harvesting and recycling, the water scarcity in Bengaluru has begun to have ecological and environmental impacts – and the impact will be disproportionately felt by the low-income groups, who can not afford private borewells, nor the cost of long-distance transfers.

A 1914 map of Bengaluru by Baedekar showing some of the old tanks in the heart of the city. In the colonial era, as a cantonment, tanks and wells served much of the city’s water demands. Image: public domain.

The article goes on to reflect on the historical, socio-economic, and political aspects of the neighbourhoods through which the pipeline flows – almost like a travelogue with a bitter note. As the pipeline networks developed, they created a set of conditions for residential and industrial development. Some neighbourhoods benefit directly from the pipeline, whereas some don’t, and over time the pipeline has further marginalized the poorer populations from receiving a good supply of water. These disparities will only get starker in the years to come. Residential overcrowding, land misappropriation, pollution, and increasing demand for industry and residences affect the efficiency of the water network and strain the groundwater resources. As more technological solutions are sought, the local ecologies that sustained these past water systems – such as agricultural patches that helped replenish tanks, the numerous rainwater-filled lakes that have since disappeared due to encroachment, or are severely polluted and littered, have been ignored.

The article underlines a harsh truth – Bengaluru never had enough water. If we are to strategize our water infrastructures again, we need new technological approaches, new resources or to reverse the direction of services from the peri-urban area to the centre of the city and vice versa, with due cognizance of encroachment and violations by existing and future development. The traditional system of tanks and wells needs to be integrated into the broader network of water resources to meet the needs of an ever-expanding urban nexus.


Pipe Dreams: stories of Bengaluru’s water supply by Devayani Khare is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

What can a delta’s history tell us about groundwater’s future?

Feature image: Mosiac of the the Ganges Delta in false color created with imagery from the Sentinal 2 satilite. CC-By Annamaria Luongo, via Wikimedia Commons


Article: Linking the Surface and Subsurface in River Deltas—Part 2: Relating Subsurface Geometry to Groundwater Flow Behavior
Authors: Xu, Z., Hariharan, J., Passalacqua, P., Steel, E., Paola, C., & Michael, H. A.

Deltas are striking features on Earth’s surface, where rivers meet large water bodies. Their flow spreads out into many channels, depositing the sediment they have been carrying, potentially since their headwaters. This sediment creates and sustains the delta, which can be hundreds of miles across. Beyond being mesmerizing, deltas are essential to human civilization, past and present. Nearly half a billion people live on deltas around the world, where the deposited sediment hosts some of the most fertile agricultural land available.

Continue reading “What can a delta’s history tell us about groundwater’s future?”

A New Paradigm in Decision Making?

A binary decision?

Paper: Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning

Authors: Gowri Srinivasan, Jeffrey D. Hyman, David A. Osthus, Bryan A. Moore, Daniel O’Malley, Satish Karra, Esteban Rougier, Aric A. Hagberg, Abigail Hunter & Hari S. Viswanathan

Geophysics problems are as difficult as Nobel Prize-winning physics problems.

Dr. Jérõme A.R. Noir

This quote from Dr. Jérõme Noir has stayed with me throughout my career. The idea: while physicists face extreme math, but also have extremely precise data for unknown phenomena, geoscientists must find vital solutions for known phenomena using just a few data points on a planet. With very little data, how can complex problems in geoscience be solved? And, how do we assess the risk of being wrong? An uncertainty quantification framework recently developed by researchers at Los Alamos National Lab uses machine learning to help geoscientists arrive at quality decisions using limited data.

Continue reading “A New Paradigm in Decision Making?”

Wet Feet? No problem: sandy humid forests grow best with access to groundwater

Pine forest in Governor Thompson State Park, WI, USA

Feature Image: Pine forest in Governor Thompson State Park, WI, USA. Yinan Chen, Public Domain, via Wikimedia Commons

Article: Groundwater subsidizes tree growth and transpiration in sandy humid forests
Authors: D. M. Ciruzzi and S. P. Loheide

Drought is often in the news these days, especially in places with arid and semi-arid climates where water is already scarce. While ecosystems have adapted over millennia to cope with dry climates and seasonal droughts, the increasing intensity and frequency of drought due to climate change and human demand for water can pose significant threats to ecosystem health and survival.

Continue reading “Wet Feet? No problem: sandy humid forests grow best with access to groundwater”

Water in the rocky layer cake beneath us

Konza Prairie Biological Station

Featured Image: Konza Prairie near Manhattan, Kansas, USA. Credit: David Litwin.

Paper: Toward a new conceptual model for groundwater flow in merokarst systems: Insights from multiple geophysical approaches.

Authors: Sullivan, P. L., Zhang, C., Behm, M., Zhang, F., & Macpherson, G. L.

The dissolution of limestone by atmospheric water forms a set of recognizable features collectively known as karst: enormous caves with stalactites and stalagmites, sinkholes, chasms, and narrow, towering  columns of rock. The hydrology of karst landscapes is often incredibly complex, as water can flow rapidly through dissolution-formed conduits below ground, and topography offers fewer clues to groundwater flow than in most other landscapes. While dramatic karstic landscapes have received a lot of scientific attention, even smaller limestone units can host karst features that affect hydrology.

Continue reading “Water in the rocky layer cake beneath us”

The Fate of Aquifers, and What Controls It

Paper: Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers

Authors: Wen-Ying Wu, Min-Hui Lo, Yoshihide Wada, James S. Famiglietti, John T. Reager, Pat J.-F. Yeh, Agnès Ducharne, and Zong-Liang Yang

The ground I’m standing on feels solid, but it’s really full of porous rocks. The holes in these rocks are all different sizes, and water can flow through and between those with larger holes. Together, bodies of rocks that are saturated with water form aquifers. As groundwater supplies more than a third of the water humans use, groundwater and the aquifers that contain it are vital. They are especially vital in mid-latitude arid and semi-arid regions without enough surface water. In their recent research, Wen-Ying Wu and their collaborators studied the future of aquifers in such regions and what factors control it.

Continue reading “The Fate of Aquifers, and What Controls It”

Looking below ground for secrets to drought resilience

Santa Ynez Mountains

Featured image: Oak savanna near the Santa Ynez mountains in California. Clyde Frogg, public domain.

Paper: Low Subsurface Water Storage Capacity Relative to Annual Rainfall Decouples Mediterranean Plant Productivity and Water Use From Rainfall Variability

Authors: Hahm, W. J., Dralle, D. N., Rempe, D. M., Bryk, A. B., Thompson, S. E., Dawson, T. E., & Dietrich, W. E.

Between 2011 and 2016, a severe drought killed over 100 million trees in California. However, not all places responded to this drought in the same way. In some locations, trees and other plants seemed hardly affected, while in other places mortality was widespread. What caused this difference? In a 2019 study, Hahm and colleagues explored the role that water storage in ecosystems has on their resilience to drought. With extreme droughts becoming more common due to climate change, understanding why certain areas are more vulnerable is important for making predictions and improving forest management.

Continue reading “Looking below ground for secrets to drought resilience”

Do Microbes Release Fluorine from Rocks?

Image of soil microcosm

Featured Image used with permission of photographer (Cassi Wattenburger)

Paper: Indigenous microbes induced fluoride release from aquifer sediments

Authors: Xubo Gao, Wenting Luo, Xuesong Luo, Chengcheng Li, Xin Zhang, Yanxin Wang

My science textbook taught me that fluorine (F) was really important for dental health, and I’ve since learned that both excessive and insufficient amounts of fluoride in groundwater can cause health issues. While the chemistry behind the release of fluoride ions from rocks or sediments into groundwater is well understood, the microbiology of this process is not. Specifically, scientists have been wondering whether microbes could speed up the release of F from sediments into groundwater. 

Continue reading “Do Microbes Release Fluorine from Rocks?”

The Extraction of Hidden Waters: 11th century Persian scientist laid the foundations for hydrology and water engineering

Qanat: Aerial View

Featured Image: Areal view of the vertical shafts of a qanat in Jupar, Iran. S.H. Rashedi / CC BY-ND via UNESCO.

Paper: The millennium-old hydrogeology textbook The Extraction of Hidden Waters by the Persian mathematician and engineer Abubakr Mohammad Karaji (953 CE–1029 CE)

Authors: Ataie-Ashtiani, B., & Simmons, C. T.

Reliable sources of water are essential for every civilization. However, the Western science of hydrology is relatively young. It started perhaps at the turn of the 19th century when John Dalton completed the first water balance for England and Wales by estimating the amount of water that fell as precipitation and left as evaporation and flow from rivers to oceans. Since ancient times, civilizations have built water infrastructure like aqueducts and wells, and writings by Aristotle and Plato suggest that the ancient Greeks had a basic understanding of the water cycle. Though in many respects, the study of hydrology in Europe and the Mediterranean stagnated between the time of these early philosophers and the 19th century.

Continue reading “The Extraction of Hidden Waters: 11th century Persian scientist laid the foundations for hydrology and water engineering”

Thickets and patches: woody plants are changing water availability in dry landscapes

Featured Image: Sparse woody plant encroachment, known as xerification, occurs here in the Chihuahuan Desert north of Coyame, in Chihuahua, Mexico. Source: Ricraider / CC BY-SA via Wikimedia Commons.

Paper: Woody Plant Encroachment has a Larger Impact than Climate Change on Dryland Water Budgets

Authors: A.P. Schreiner-McGraw, E.R. Vivoni, H. Ajami, O.E. Sala, H.L. Throop, and D.P.C. Peters

Almost half of the land on Earth is arid, with little precipitation. Arid lands are home to roughly 20% of the world’s human population, and to much of the world’s livestock as well. Arid lands are changing rapidly, both with respect to land cover and water availability. While the effects of climate change on arid places have attracted a lot of attention, the encroachment of woody plants into grasslands is also rapidly transforming arid landscapes. New research shows that the effects of woody plant encroachment are even more important than climate change for the water budget of arid ecosystems.

Continue reading “Thickets and patches: woody plants are changing water availability in dry landscapes”