The growing threat of hurricane-associated flooding in southeastern Texas

Feature Image: Flooding in Port Arthur, Texas on August 31, 2017 from Hurricane Harvey. Image from Wikimedia.

Article: Assessment of Future Flood Hazards for Southeastern Texas: Synthesizing Subsidence, Sea‐Level Rise, and Storm Surge Scenarios
Authors: M. M. Miller and M. Shirzaei

Residents of southeastern Texas are not strangers to hurricane landfalls, including Hurricane Harvey in 2017, which caused 80 fatalities and damaged over 80,000 houses without flood insurance. With the population of coastal areas in the United States expected to continue to grow, understanding how hurricane-associated flooding will change in the future is essential for informing policy decisions and flood resilience strategies. Unfortunately southeastern Texas is facing a triple threat of factors that increase the risk of flooding during hurricane landfalls: land subsidence, sea level rise, and more intense hurricanes.

Continue reading “The growing threat of hurricane-associated flooding in southeastern Texas”

How does dust from African and Asian deserts affect rainfall over California?

Featured image: Sand Dunes by Free-Photos on Pixabay

Paper: Dusty Atmospheric Rivers: Characteristics and Origins

Authors: Kara K. Voss, Amato T. Evan, Kimbery A. Prather, and F. Martin Ralph

Atmospheric rivers, narrow plumes of highly concentrated water vapor in the atmosphere, can cause heavy rain over the coastal western United States and southwest Canada. In fact, up to half of California’s annual rainfall comes from atmospheric rivers, and while this rain helps replenish California’s water sources, it can also cause flooding and mudslides. A new study sheds light on how dust kicked up from deserts halfway around the world in Africa and Asia may influence these atmospheric rivers and control California’s rain patterns.

Continue reading “How does dust from African and Asian deserts affect rainfall over California?”

Small Sediment’s Big Impact on Flash Floods

Featured image by Hans from Pixabay.

Paper: Modeling the Effects of Sediment Concentration on the Propagation of Flash Floods in an Andean Watershed

Authors: María Teresa Contreras and Cristían Escauriaza

Climate change has altered weather patterns around the world and has even led to increased heavy rainfall in some regions.  This, combined with El Niño – a weather pattern produced by unusual winds that can cause some regions to experience heavier than normal rainfall – has led to high numbers of catastrophic flash floods in populated areas near the Andes mountains.  To add insult to injury, climate models predict increases in heavy rainfall events in the future, further worsening the chance for flash floods. New research from scientists working in Chile and the United States aims to model the impact of these floods on communities by simulating realistic flash flood conditions with different amounts of sediment, a potentially dangerous component of flash floods in mountainous regions.

Continue reading “Small Sediment’s Big Impact on Flash Floods”

Sediment riding on ice to the rescue of vulnerable salt marshes

Featured image by Jennifer Crowder from Pixabay.

Paper: Enhanced, climate-driven sedimentation on salt marshes
Authors: D.M. FitzGerald, Z.J. Hughes, I.Y. Georgiou, S. Black, A. Novak
Journal: Geophysical Research Letters

Accelerated sea level rise threatens to drown many of the world’s salt marshes, but sediment riding on ice rafts might be coming to the rescue. Continue reading “Sediment riding on ice to the rescue of vulnerable salt marshes”

What Caused the Flood that (Possibly) Gave Rise to an Empire?

Featured image: The Yellow River Breaches its Course by Ma Yuan, Public Domain

Paper: Uranium isotopic constraints on the nature of the prehistoric flood at the Lajia site, China
Authors: Le Li, Jun Chen, David William Hedding, Yuanhe Fu, Maolin Ye, Gaojun Li

A small sand deposit might hold the key to dating the rise of China’s first dynasty. Continue reading “What Caused the Flood that (Possibly) Gave Rise to an Empire?”