Making Mountains Out of Molehills? Long-Term Geomorphic Surface Impacts of Mountaintop Removal Mining

Featured Image:  Mountaintop removal mining site in Appalachia. Copyright: CC BY-SA 4.0 via. wikimedia commons.

Report: Peripheral gully and landslide erosion on an extreme anthropogenic landscape produced by mountaintop removal coal mining (2020)

Authors: Miles Reed & Dr. Steve Kite

There’s a general consensus that coal mining is ‘bad’ for the environment, but beyond carbon emissions, what is its visible, physical impact on our surroundings? What lasting damage does mining create on the Earth’s surface? The answer is that it has a tremendous impact; specifically, mining in Appalachia is linked to distorting the natural flow of water on the landscape, which creates ripple (no pun intended) effects on the greater environment. A recent study by Reed and Kite details those effects on Appalachian landscapes, directly linking mountaintop mining to erosion and landslides. Now, as worries about access to safe, clean water being jeopardized by fossil fuel production abound nationwide, exploring the impacts of mountaintop mining on Appalachian freshwater becomes incredibly important with immediate and personal impacts.

Continue reading “Making Mountains Out of Molehills? Long-Term Geomorphic Surface Impacts of Mountaintop Removal Mining”

Landscapes get depressed too: limestone depressions pattern a wetland landscape

Aerial view of the Big Cypress National Preserve

Feature Image: Limestone depressions cover the landscape in the Big Cypress National Preserve in Florida, USA. (C) Google.

Article: Competition Among Limestone Depressions Leads to Self‐Organized Regular Patterning on a Flat Landscape
Authors:
Dong, X., Murray, A. B., & Heffernan, J. B.

Patterns are abundant in nature, from evenly spaced termite mounds and vegetation patches to repeating series of ridges and valleys to sand dunes. The questions of why these patterns are so uniform and why they are found in disparate settings has been the subject of intense scientific interest over the last decades. Mathematical tools have given scientists the ability to study these “complex systems,” where behavior of the whole system emerges from interactions between smaller parts. While many different systems have been studied, recently researchers from the Duke University and the University of California at Davis investigated a patterned landscape with mysterious origins: the large, evenly spaced depressions in limestone bedrock that cover nearly 3000 square kilometers of the Big Cypress National Preserve in the Florida Everglades.

Continue reading “Landscapes get depressed too: limestone depressions pattern a wetland landscape”

Saving sandbars in the Grand Canyon

Grand Canyon sand bar

Featured image: A sandbar along the Colorado River in the Grand Canyon. Photo by the author. CC-BY-SA.

Paper: A morphodynamic model to evaluate long-term sandbar rebuilding using controlled floods in the Grand Canyon

Authors: Erich R. Mueller and Paul E. Grams

Journal: Geophysical Research Letters

The Grand Canyon is famous for its stark, bare-bedrock landscapes. But those who make the hike, mule ride, or raft trip into its depths are rewarded with a different view: the green, inviting banks of the Colorado River where ancestral Puebloans once grew corn and where rafters now collect overturned boats between rapids. The Canyon owes its bucolic river-bottom landscape to an unsung hero: sand deposited during large floods that creates hospitable habitat for plants and aquatic animals. Since the building of Glen Canyon Dam just upstream in the 1950s, the Grand Canyon has been starved of sand, damaging its fragile ecosystems. Now, a new study quantifies how controlled floods could help restore sandbars to the Grand Canyon.

Continue reading “Saving sandbars in the Grand Canyon”

Smart boulders – can rolling stones gather landslide data?

Featured Image: The Araniko highway stretching towards Kodari – this was once the route to Lhasa. © Michel Royon / Wikimedia Commons

Paper: Development of smart boulders to monitor mass movements via the Internet of Things: a pilot study in Nepal

Authors: Dini, B., Bennett, G. L., Franco, A. M. A., Whitworth, M. R. Z., Cook, K. L., Senn, A., and Reynolds, J. M.

Nepal straddles the Himalayan arc – the collision boundary of the Indian and the Eurasian tectonic plates that crumbled to form the highest mountains in the world, the Himalayas. Its precarious location makes it among the most disaster-prone countries in the world. Its landscape has been shaped, and continues to be shaped by seismic activity – from landslides and earthquakes, to glacial lake outburst floods (GLOFs) where the glacier ice or rock debris at the periphery of a glacial lake break off, resulting in severe floods downslope.

Driving out from Kathmandu city towards Bhaktapur, towards Kodari at the Nepal-China border, the landscape transitions from pagoda-style temples, to settlements, further on to a bleak, boulder-strewn landscape. This is the Araniko highway, built on an old yak track, running alongside the Bhote Koshi river, known to the locals as a difficult, dangerous landscape prone to rockfalls and landslides, especially during the monsoons. Warning signs and steel wire mesh welded to the slopes to mitigate landslides define this stretch, and angular boulders mark where the valleys rise into mountains, and are testimony to the region’s disaster-prone legacy.

The Bhote Koshi river that flows along the Araniko highway is littered with boulders that have worked loose from the valley slopes.
Image credit: Gerd Eichmann (CC BY-SA)

Boulder movement downslope happens due to different kinds of landslides, ranging from abrupt, free-falling rocks to slower flow-like movements. Large boulders are a threat to life and infrastructure, and may amplify landslides when they move downslope or cause floods if they block a river channel. 

In fragile landscapes, understanding when and how boulders move downslope and into river networks could be essential to detecting hazards. A rolling stone or a boulder in this case gathers no moss, they say, but can it gather landslide data? A pilot study by Benedetta Dini et al., in the Bhote Koshi catchment, documents how technology can help detect land movement and find use as early warning systems.

Twenty-three long-range, wireless trackers were drilled into boulders along known landslide or debris flow channels. Movement could be triggered by different events including debris flow, large-scale events or collisions. The sensors were programmed to send routine GPS locations every 24 hours, and an accelerometer would report when the boulder moves. A camera was also set up with a field views across the channels to acquire an image every 30 min. Via image sequences, the location of the sensor-embedded boulders are able to compare to prominent trees to identify and validate the movement data. Based on changes in tilt and displacement of boulders, corresponding to movement within a mass of rocks or downslope respectively, the study found that the sensors could successfully detect both slow and rapid movements. 

In conclusion, despite technical difficulties which could be a focus for future research, smart boulders have good potential as weather-proof, long-term, real-time, cost-effective monitoring tools, not just in Nepal but in other landslide-prone areas across the world.


Smart boulders – can rolling stones gather landslide data? by Devayani Khare is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

How did valleys form on early Mars? Some say in ice…

Featured image: The Nirgal Vallis river valley on Mars as seen by the HRSC Camera onboard the European Space Agency’s Mars Express mission. Image credit: ESA/DLR/FU Berlin.

Paper: Valley formation on early Mars by subglacial and fluvial erosion.

Authors: Anna Grau Galofre, A. Mark Jellinek & Gordon R. Osinski.

“Some say the world will end in fire/ Some say in ice” begins the famous poem by Robert Frost. But what about how worlds begin? For years the theory of a “warm and wet” early Mars has been the conventional explanation for the vast valley networks formed billions of years ago that we can see on the surface today. Now, a new study suggests that at least some of these valleys could have formed under colossal ice sheets, in a distinctly more icy world.

Continue reading “How did valleys form on early Mars? Some say in ice…”

Building mountains

Featured image: Yushan (Jade Mountain) in Taiwan. From Wikimedia Commons by Kailing3 under a CC-BY-SA 3.0 license.

Paper: Coseismic Uplift of the 1999 Mw7.6 Chi‐Chi Earthquake and Implication to Topographic Change in Frontal Mountain Belts

Authors: R.Y. Chuang, C.H. Lu, C.J. Yang, Y.S. Lin, and T.Y. Lee

Journal: Geophysical Research Letters

The height of a mountain range results from a hard-fought battle between tectonic plates and the forces of erosion. Earthquakes generated by clashes between plates cause the upward motion of rock even as they shake the landscape, causing large and numerous landslides. When a large earthquake occurs, which process wins? Does more rock go up than come down, leading to a higher mountain range? Or does shaking-induced erosion remove more material than is uplifted by the earthquake? New research suggests that earthquakes might be able to build mountains up faster than landslides can bring them down.

Continue reading “Building mountains”

When space is time: evolving soil hydrology on glacial moraines

Featured image: The Stein Glacier in the central Swiss Alps, where the study was conducted. Left panel © Google, right panels CC BY Florian Lustenberger in Hartmann et al. 2020.

Paper: Field observations of soil hydrological flow path evolution over 10 millennia

Authors: Hartmann , A., Semenova, E., Weiler, M., & Blume, T.

The way water flows through soil and sediments can be incredibly diverse. In the simplest case, water flows uniformly through all of the pore space between grains. Most soils act very differently though. Water moves quickly through certain pathways and not at all through other areas. This preferential flow of water has important consequences for the ability of the soil to hold water, and for the movement of nutrients and contaminants. Understanding what factors affect the evolution of preferential flow pathways can help scientists better understand how soils work now, and how they will respond to human induced changes into the future.

Continue reading “When space is time: evolving soil hydrology on glacial moraines”

Rivers underground

Featured Image: The River Styx emerging from Mammoth Cave by Daniel Schwen. From Wikipedia under a CC-BY-SA license.

Paper: Modeling cave cross‐section evolution including sediment transport and paragenesis
Authors: M.P. Cooper and M.D. Covington

It’s not easy to watch caves form. It happens slowly and out of view, so we know relatively little about cave passage erosion compared to our knowledge of how rivers at Earth’s surface work. New research suggests that the same physical erosion processes that cut river channels at the surface might also be at work underground, adding new depth to our understanding of cave genesis.

Continue reading “Rivers underground”

Looking for life on Mars: what can the valleys that once flowed into Jezero crater tell us about the best rocks to sample?

Featured image: Artist depiction of the Mars 2020 Perseverance Rover on Mars. Public domain (NASA/JPL-Caltech).

Paper: Fluvial Regimes, Morphometry, and Age of Jezero Crater Paleolake Inlet Valleys and Their Exobiological Significance for the 2020 Rover Mission Landing Site.

Authors: Nicolas Mangold, Gilles Dromart, Veronique Ansan, Francesco Salese, Maarten G. Kleinhans, Marion Masse, Cathy Quantin-Nataf, and Kathryn M. Stack.

On Mars, we see a very different landscape to that on Earth. Although now an arid planet, great scars visible from space – such as the colossal Valles Marineris, which dwarfs Earth’s Grand Canyon – hint at a once watery world. But scientists still aren’t sure whether water on Mars might once have hosted life. On the 30th of July, NASA will launch the Mars 2020 mission, which will gather clues about the planet’s past and seek signs of ancient life on Mars. An essential part of such a space mission is extensive planning, so that scientists can target the most important rocks for study and sampling when the rover gets to Mars. A recent study by Nicolas Mangold and colleagues did just that by looking closely at the landing site for this next Mars mission, known as Jezero crater.

Continue reading “Looking for life on Mars: what can the valleys that once flowed into Jezero crater tell us about the best rocks to sample?”

Rivers of Memory: India

Paper: Evolution of modern river systems: an assessment of ‘landscape memory’ in Indian river systems

Authors: Vikrant Jain, Sonam, Ajit Singh, Rajiv Sinha, S. K. Tandon

“A river cuts through rock not because of its power, but because of its persistence.”

James N Watkins

In geomorphology, the persistence of rivers is etched into the very landscape – a memory of the forces that once shaped it, and continue to do so, slowly, and inexorably. Landscape memory, as Gary John Brierley once wrote, is the imprint of the past upon contemporary landscapes, which include geologic, climatic, and anthropogenic factors.

The rivers of the Indian subcontinent bear witness to forces that shaped them over millennia – and a recent publication in the Journal of International Geosciences traces the evolution of India’s river systems at different time scales.

Continue reading “Rivers of Memory: India”