Do Hurricanes Choke on Dust?

Satellite image showing plume of dust drifting from north Africa

Paper – Influence of Saharan Dust on the Large‐Scale Meteorological Environment for Development of Tropical Cyclone Over North Atlantic Ocean Basin
Authors – Yue Sun and Chuanfeng Zhao

Several times a year, strong gusts blow dust from the Sahara Desert westwards over the Atlantic Ocean. When the plume reaches the Caribbean, many residents experience respiratory irritation and allergic reactions to the dust. On particularly bad days, those with sensitivities to or certain pre-existing conditions are urged to stay indoors. The haze reduces visibility and casts a dull filter over the landscape.

Continue reading “Do Hurricanes Choke on Dust?”

How does climate change impact extreme cold outbreaks in the United States?

Featured image from CJ on Pixabay

Article: Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States
Authors: C. Zhou, A. Dai, J. Wang, and D. Chen

Questions about extreme cold outbreaks have been featured in the U.S. news recently, as a majority of the country experienced record-breaking cold temperatures during the week of February 8, 2021. Was this extreme cold related to climate change? Will we see more of these events in the future? As Texans faced extensive blackouts due to issues with electricity generation and transmission because of the cold, meteorologists and news reporters tried to answer these questions as best they could. But what does the latest climate science say about the link, if any, between extreme cold outbreaks and climate change?

Continue reading “How does climate change impact extreme cold outbreaks in the United States?”

Will Atmospheric Rivers Shift from Helpful to Harmful due to Climate Change?

Feature Image by mirobo on Pixabay

Article: The Shifting Scales of Western U.S. Landfalling Atmospheric Rivers Under Climate Change
Authors: Rhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O’Brien, T. A., Patricola, C. M., Ullrich, P. A., Wehner, M., and Zhou, Y.

While residents of the West Coast of the United States usually don’t have to worry about hurricanes, snow storms, or tornadoes, every winter they do experience extreme weather events known as atmospheric rivers. Atmospheric rivers are plumes of highly concentrated water vapor in the atmosphere. When they move over land, they can produce very heavy rainfall that can cause flooding and even trigger landslides. However, atmospheric rivers are not all bad; in fact, some might even say they’re essential. They provide up to half of California’s rainfall every year, which is beneficial for agriculture and water supply. Like all weather events, atmospheric rivers are impacted by climate change, so how will they be different in a few decades? This question is essential for water resource managers and regular residents of the West Coast, since atmospheric rivers can both help and harm their livelihoods.

Continue reading “Will Atmospheric Rivers Shift from Helpful to Harmful due to Climate Change?”

Satellite Technology Helps Discover New Weather Phenomena: Lightning Megaflashes

Featured Image from Bethany Laird on Unsplash

Paper: Where are the Most Extraordinary Lightning Megaflashes in the Americas?

Author: Michael Peterson

Most lightning flashes only last 0.2 seconds, meaning if you blink at the wrong moment, you could miss it. However, scientists have developed new lightning-detection instruments, known as Geostationary Lightning Mappers (GLMs), that never miss a flash. The GLMs are aboard the two Geostationary Operational Environmental Satellites (GOES-West and GOES-East), which are in stationary orbits over the Earth’s western hemisphere. With the data from the GLMs, atmospheric scientists have discovered new lightning phenomena called “megaflashes” which can light up the sky for as long as 16 seconds.

Continue reading “Satellite Technology Helps Discover New Weather Phenomena: Lightning Megaflashes”

Strong Atmospheric Updrafts Increase the Danger Associated with Wildfires

Featured Image: Picture of a wildfire by skeeze on Pixabay

Paper: Extreme Pyroconvective Updrafts During a Megafire
Authors: B. Rodriguez, N. P. Lareau, D. E. Kingsmill, and C. B. Clements

Atmospheric updrafts, or columns of air moving quickly upward, are typically associated with severe thunderstorms and tornadoes and have been studied using radar and airplane data for decades. The extreme heat from large, intense fires can also cause updrafts, but this type of updraft has barely been studied by atmospheric science researchers. Understanding the formation and structure of fire-generated updrafts is important because they can be hazardous to aircraft, can loft embers far distances and spark new fires, and can even initiate fire-generated thunderstorms. A recent study has revealed just how powerful these updrafts above large fires can be.

Continue reading “Strong Atmospheric Updrafts Increase the Danger Associated with Wildfires”

North Atlantic Ice Melt May Increase the Storminess of the Northern Hemisphere

Featured image of sea ice from Free-Photos on Pixabay

Paper: Rapid Cooling and Increased Storminess Triggered by Freshwater in the North Atlantic
Authors: M. Oltmanns, J. Karstensen, G. W. K. Moore, and S. A. Josey

Way up north in the Arctic Circle, sea ice and glaciers are rapidly melting and sending a massive amount of cold, fresh water into the North Atlantic Ocean. At first this influx of cold water may seem beneficial to offset the warming from climate change, but new research suggests that this meltwater from Greenland and the Arctic increases the number of winter storms that occur in the Northern Hemisphere.

Continue reading “North Atlantic Ice Melt May Increase the Storminess of the Northern Hemisphere”

We’re Not in Kansas Anymore: Documenting Historical Tornadoes in Northern Eurasia

Feature image: “Tornado Alley” by Nikolas Noonan on unsplash.com (https://unsplash.com/photos/n_3kdpSkrJo)

Paper: Tornadoes in Northern Eurasia: From the Middle Age to the Information Era
Authors: A. Chernokulsky, M. Kurgansky, I. Mokhov, A. Shikhov, I. Azhigov, E. Selezneva, D. Zakharchenko, B. Antonescu, and T. Kühne

When most people are asked to picture a tornado in their mind, they probably imagine the violent column of swirling wind and debris tearing through an open field in rural Kansas, as depicted in the classic 1939 film The Wizard of Oz. However, while the United States Midwest, so-called “Tornado Alley”, is the most well-known tornado hot-spot in the world, tornadoes touch down on every continent except Antarctica. A recent study by Chernokulsky and his team has established a comprehensive history of tornadoes that have occurred in an area commonly neglected in tornado research: northern Eurasia.

Continue reading “We’re Not in Kansas Anymore: Documenting Historical Tornadoes in Northern Eurasia”

How does dust from African and Asian deserts affect rainfall over California?

Featured image: Sand Dunes by Free-Photos on Pixabay

Paper: Dusty Atmospheric Rivers: Characteristics and Origins

Authors: Kara K. Voss, Amato T. Evan, Kimbery A. Prather, and F. Martin Ralph

Atmospheric rivers, narrow plumes of highly concentrated water vapor in the atmosphere, can cause heavy rain over the coastal western United States and southwest Canada. In fact, up to half of California’s annual rainfall comes from atmospheric rivers, and while this rain helps replenish California’s water sources, it can also cause flooding and mudslides. A new study sheds light on how dust kicked up from deserts halfway around the world in Africa and Asia may influence these atmospheric rivers and control California’s rain patterns.

Continue reading “How does dust from African and Asian deserts affect rainfall over California?”