Featured image: White flocculent mats in and around the extremely gassy, high-temperature (>100°C, 212°F) white smokers at Champagne Vent. Copyright: CC BY-SA 4.0 via. wikimedia commons.
Paper: White and green rust chimneys accumulate RNA in a ferruginous chemical garden
Authors: Vanessa Helmbrecht, Maximilian Weingart, Frieder Klein, Dieter Braun, William D. Orsi
When we think of alien worlds, we may evoke an image of vast oceans with tall scattered vertical structures, like columns or towers. By looking at pictures of alkaline hydrothermal vents, you will realize that such alien worlds do not just exist in science fiction movies. Alkaline hydrothermal vents are deep ocean environments widespread on Earth more than 4 billion years ago, in which light globular and spiky chimneys rise from the dark ocean floor. They offer a combination of chemical conditions that may have supported the first forms of life on Earth. However, alkaline hydrothermal vents have been considered inhospitable for the formation of nucleic acids, the information-storage molecules present in all living cells. A new paper from researchers at LMU Munich challenges this assumption by providing critical evidence for the stabilization of nucleic acids in alkaline hydrothermal vents, a discovery that would make these environments the most suitable candidates for the origin of life on Earth.
Continue reading “New support for the origin of life in alkaline hydrothermal vents”