Is geothermal energy fit for megacities?

Featured image: Steam rising from Nesjavellir Geothermal Power Station in Iceland via Wikimedia commons. Public Domain.

Article: Geothermal energy as a means to decarbonize the energy mix of megacities

Authors: Carlos A. Vargas, Luca Caracciolo, Philip Ball

As the world grapples with climate change, the transition to renewable energy has become a necessity. Governments are investing heavily in solar and wind power to reduce the dependence on fossil fuels. Another non-conventional source of energy that’s still understudied is geothermal energy. But what is geothermal energy? Geo means earth, thermal means heat. The internal heat of Earth is harnessed to heat water and produce power. An advantage of using geothermal energy over solar and wind is that, it doesn’t rely on weather to produce electricity. It provides clean, constant, stable and predictable supply of power. The question is, can geothermal energy cater to the demand of megacities where a large chunk of the world’s population resides?

Continue reading “Is geothermal energy fit for megacities?”

Doubling Electricity Production by Storing it!

Pumped Hydro Storage

Paper: The value of CO2-Bulk energy storage with wind in transmission-constrained electric power systems

Authors: Jonathan D. Ogland-Hand, Jeffrey M. Bielicki, Benjamin M. Adams, Ebony S. Nelson, Thomas A. Buscheck, Martin O. Saar, Ramteen Sioshansi

Some storage solutions give back more than we put in

Energy is lost when batteries charge. This is the case for most energy storage solutions – we get out less than we put in. Some storage solutions, however, give back more than we put in, such as hydro-power dams. In these dams, energy is stored as elevated water (potential energy), and rivers add more water (more energy). An international team of researchers recently described an underground storage solution which could more than double the electricity put in and also help reduce CO2 in the atmosphere.

Continue reading “Doubling Electricity Production by Storing it!”

A New Paradigm in Decision Making?

A binary decision?

Paper: Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning

Authors: Gowri Srinivasan, Jeffrey D. Hyman, David A. Osthus, Bryan A. Moore, Daniel O’Malley, Satish Karra, Esteban Rougier, Aric A. Hagberg, Abigail Hunter & Hari S. Viswanathan

Geophysics problems are as difficult as Nobel Prize-winning physics problems.

Dr. Jérõme A.R. Noir

This quote from Dr. Jérõme Noir has stayed with me throughout my career. The idea: while physicists face extreme math, but also have extremely precise data for unknown phenomena, geoscientists must find vital solutions for known phenomena using just a few data points on a planet. With very little data, how can complex problems in geoscience be solved? And, how do we assess the risk of being wrong? An uncertainty quantification framework recently developed by researchers at Los Alamos National Lab uses machine learning to help geoscientists arrive at quality decisions using limited data.

Continue reading “A New Paradigm in Decision Making?”