Understanding highly explosive basaltic eruptions using simulations

Featured image: A fissure cone of Kīlauea (Hawaii) erupting during the 2018 eruptive episode. via Wikimedia commons (Public domain)

Paper: Role of volatiles in highly explosive basaltic eruptions.

Authors: Giuseppe La Spina, Fabio Arzilli, Mike R. Burton, Margherita Polacci, Amanda B. Clarke

When we think of Hawaii or Iceland, the first thing that comes to mind is volcanoes. Lava fountains spew out basaltic lava, which silently meanders its way to the ocean. The notion that basaltic eruptions are always less explosive compared to other types like rhyolitic and andesitic eruptions is not entirely true. For example, Mount Etna in Italy has produced highly explosive basaltic eruptions such as the 122 BCE Plinian Eruption and another in 1669. Because highly explosive basaltic eruptions are not very common, they’re not fully understood leaving scientists wondering “What could be the reason behind this erratic behaviour?”

Continue reading “Understanding highly explosive basaltic eruptions using simulations”

Lava tubes on the Moon and Mars might be big and stable enough for humans to live in

Featured image: A hole with approximately 150 metres diameter, indicating a potential lava tube on Mars. Public Domain (NASA/JPL/University of Arizona).

Paper: Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology

Authors: Francesco Sauro, Riccardo Pozzobon, Matteo Massironi, Pierluigi De Berardinis, Tommaso Santagata, Jo De Waele.

Editor’s note: due to an editorial mixup, two Geobites authors—unbeknownst to each other—wrote about the same paper. We encourage readers to take advantage of this opportunity to learn how two different geoscientists would describe the same exciting development in their field. The other post is here.

When you picture living on another planet, you probably don’t imagine living underground. But lava tubes – underground cave systems formed by flowing lava – are more sheltered from radiation and micrometeorites than the surface of the Moon or Mars. They are also more stable in temperature and could contain water ice. For these reasons both popular culture, such as the National Geographic Mars series, and scientists alike, have hypothesised that humans might live in them one day. Now, a new review and analysis study led by Francesco Sauro at the University of Bologna has sought to investigate potential lava tubes on both the Moon and Mars.

Continue reading “Lava tubes on the Moon and Mars might be big and stable enough for humans to live in”

Out of this world! Evaluating the presence of lava tubes on other planets and the potential for future human habitats

Paper: Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology

Authors: F. Sauro, R. Pozzobon, M. Massironi, P. De Berardinis, T. Santagata, J. De Waele

Editor’s note: due to an editorial mixup, two Geobites authors—unbeknownst to each other—wrote about the same paper. We encourage readers to take advantage of this opportunity to learn how two different geoscientists would describe the same exciting development in their field. The other post is here.

Ever since humankind set foot on the surface of the Moon in 1969, the question of whether one day the human race would inhabit other planets has been pondered over. As a result of the return of samples collected by the Apollo astronauts, and the delivery of meteorites to the Earth, scientists are continuously learning about the geological evolution of other planets.

Continue reading “Out of this world! Evaluating the presence of lava tubes on other planets and the potential for future human habitats”