Strong Atmospheric Updrafts Increase the Danger Associated with Wildfires

Featured Image: Picture of a wildfire by skeeze on Pixabay

Paper: Extreme Pyroconvective Updrafts During a Megafire
Authors: B. Rodriguez, N. P. Lareau, D. E. Kingsmill, and C. B. Clements

Atmospheric updrafts, or columns of air moving quickly upward, are typically associated with severe thunderstorms and tornadoes and have been studied using radar and airplane data for decades. The extreme heat from large, intense fires can also cause updrafts, but this type of updraft has barely been studied by atmospheric science researchers. Understanding the formation and structure of fire-generated updrafts is important because they can be hazardous to aircraft, can loft embers far distances and spark new fires, and can even initiate fire-generated thunderstorms. A recent study has revealed just how powerful these updrafts above large fires can be.

Continue reading “Strong Atmospheric Updrafts Increase the Danger Associated with Wildfires”

North Atlantic Ice Melt May Increase the Storminess of the Northern Hemisphere

Featured image of sea ice from Free-Photos on Pixabay

Paper: Rapid Cooling and Increased Storminess Triggered by Freshwater in the North Atlantic
Authors: M. Oltmanns, J. Karstensen, G. W. K. Moore, and S. A. Josey

Way up north in the Arctic Circle, sea ice and glaciers are rapidly melting and sending a massive amount of cold, fresh water into the North Atlantic Ocean. At first this influx of cold water may seem beneficial to offset the warming from climate change, but new research suggests that this meltwater from Greenland and the Arctic increases the number of winter storms that occur in the Northern Hemisphere.

Continue reading “North Atlantic Ice Melt May Increase the Storminess of the Northern Hemisphere”

We’re Not in Kansas Anymore: Documenting Historical Tornadoes in Northern Eurasia

Feature image: “Tornado Alley” by Nikolas Noonan on unsplash.com (https://unsplash.com/photos/n_3kdpSkrJo)

Paper: Tornadoes in Northern Eurasia: From the Middle Age to the Information Era
Authors: A. Chernokulsky, M. Kurgansky, I. Mokhov, A. Shikhov, I. Azhigov, E. Selezneva, D. Zakharchenko, B. Antonescu, and T. Kühne

When most people are asked to picture a tornado in their mind, they probably imagine the violent column of swirling wind and debris tearing through an open field in rural Kansas, as depicted in the classic 1939 film The Wizard of Oz. However, while the United States Midwest, so-called “Tornado Alley”, is the most well-known tornado hot-spot in the world, tornadoes touch down on every continent except Antarctica. A recent study by Chernokulsky and his team has established a comprehensive history of tornadoes that have occurred in an area commonly neglected in tornado research: northern Eurasia.

Continue reading “We’re Not in Kansas Anymore: Documenting Historical Tornadoes in Northern Eurasia”

How does dust from African and Asian deserts affect rainfall over California?

Featured image: Sand Dunes by Free-Photos on Pixabay

Paper: Dusty Atmospheric Rivers: Characteristics and Origins

Authors: Kara K. Voss, Amato T. Evan, Kimbery A. Prather, and F. Martin Ralph

Atmospheric rivers, narrow plumes of highly concentrated water vapor in the atmosphere, can cause heavy rain over the coastal western United States and southwest Canada. In fact, up to half of California’s annual rainfall comes from atmospheric rivers, and while this rain helps replenish California’s water sources, it can also cause flooding and mudslides. A new study sheds light on how dust kicked up from deserts halfway around the world in Africa and Asia may influence these atmospheric rivers and control California’s rain patterns.

Continue reading “How does dust from African and Asian deserts affect rainfall over California?”