Cooking up crystals in record time

Featured image: Example of the rock type Pegmatite. Here, crystals of the mineral tourmaline (light-dark green color), and crystals of the mineral lepidolite (pink-purple color) can be seen, sourced from Wikipedia. This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Paper: Episodes of fast crystal growth in pegmatites

Authors: Patrick R. Phelps, Cin-Ty A. Lee, Douglas M. Morton

Anyone who has ever wandered along a pebble-ridden beach or a mountainous trail has likely picked up a rock or two, and maybe these rocks contained an array of different crystals (see image above). Perhaps these rocks then skipped along the surface of a still lake, or made their way into the pockets of a snack-ridden backpack, either to never be seen again or to be added to an ever-growing rock collection. Yet, these little pieces of Earth’s history have the potential to do so much more. With the right tools, the crystals within these rocks can be used to inform us of the geological processes that have shaped our planet Earth.

Continue reading “Cooking up crystals in record time”

When Lightning Strikes! Fulgurite Formation and Earth’s Weather

Paper: Lightning-induced weathering of Cascadian volcanic peaks


Authors: Jonathan M. Castro, Franziska Keller, Yves Feisel, Pierre Lanari, Christoph Helo, Sebastian P. Mueller, C. Ian Schipper, Chad Thomas

The bright flashes followed by the loud thunderclaps of large storms are inherently transient, but a recent study by Castro et al proposes a new approach to investigating the history of storm activity and extreme weather events on Earth: through fossilized lightning strikes, or fulgurites.

Continue reading “When Lightning Strikes! Fulgurite Formation and Earth’s Weather”

Tracing the origin of Earth’s water with meteorites

Paper: Earth’s water may have been inherited from material similar to enstatite chondrite meteorites

Authors: Laurette Piani, Yves Marrocchi, Thomas Rigaudier, Linel G. Vacher, Dorian Thomassin, Bernard Marty

To date, Earth is the only planetary object known to have extensive bodies of liquid water (H2O) at its surface. Water is fundamental to supporting life as we know it with every single organism on our planet requiring water to survive. Even our own human bodies are made up of 60-70% water. However, the origin of Earth’s water has long been debated.


Continue reading “Tracing the origin of Earth’s water with meteorites”

Got an apatite for minerals? Of quartz you do!

Minerals, those naturally occurring, inorganic materials with well-defined chemical compositions and crystal structures have long influenced human culture and fascinated (geo)scientists. Some of the earliest descriptions of minerals and their uses date back to Ancient Egypt, recorded on papyri, as well as on stelae (blocks of stone or wood), and ostraca (clay tablets or pottery shards). Minerals and their uses have been intertwined with human history for thousands of years from the gemstone bracelets of the Egyptians and their belief that color was a strong reflection of personality (color symbolism, e.g., the use of gold for crowns on pharaohs and its association with the sun), to the Greeks and their wide use of gemstones in necklaces, and bracelets. 

Continue reading “Got an apatite for minerals? Of quartz you do!”

Out of this world! Evaluating the presence of lava tubes on other planets and the potential for future human habitats

Paper: Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology

Authors: F. Sauro, R. Pozzobon, M. Massironi, P. De Berardinis, T. Santagata, J. De Waele

Editor’s note: due to an editorial mixup, two Geobites authors—unbeknownst to each other—wrote about the same paper. We encourage readers to take advantage of this opportunity to learn how two different geoscientists would describe the same exciting development in their field. The other post is here.

Ever since humankind set foot on the surface of the Moon in 1969, the question of whether one day the human race would inhabit other planets has been pondered over. As a result of the return of samples collected by the Apollo astronauts, and the delivery of meteorites to the Earth, scientists are continuously learning about the geological evolution of other planets.

Continue reading “Out of this world! Evaluating the presence of lava tubes on other planets and the potential for future human habitats”

Tiny but Mighty! Nanosized Drivers of Explosive Volcanism

Paper: Can nanolites enhance eruption explosivity?

Authors: F. Cáceres, F. B. Wadsworth, B. Scheu, M. Colombier, C. Madonna, C. Cimarelli, K-U. Hess, M. Kaliwoda, B. Ruthensteiner, D. B. Dingwell

Explosive volcanic eruptions have punctuated our planet’s geological record for millions of years. The explosive nature of these eruptions can lead to thousands of cubic kilometers (that’s a billion Olympic swimming pools) of material travelling hundreds of miles across our landscapes and into our atmosphere. Approximately 630,000 years ago, the most recent eruption from the Yellowstone volcanic center sent ash and dust from Wyoming to southern Texas, USA. More recently, the 1815 eruption of Mt. Tambora, Indonesia, led to 1816 being historically known as the “Year Without a Summer”. The “Year without a summer” was started when volcanic materials entered the atmosphere and induced a volcanic winter, which led to extreme weather, agricultural stresses, and food shortages across the globe.

Continue reading “Tiny but Mighty! Nanosized Drivers of Explosive Volcanism”