Eunice Foote, the original founder of climate change dynamics

Featured Image: Artist rendition of Eunice Foote conducting research on compressed gasses. Image courtesy Carlyn Iverson, NOAA.  Featured image courtesy GNU Free Documentation License

Papers: Circumstances affecting the heat of the Sun’s rays; Understanding Eunice Foote’s 1856 experiments: heat absorption by atmospheric gases

Authors: Eunice Foote; Joseph Ortiz and Ronald Jackson

“An atmosphere of [carbon dioxide] would give our Earth a high temperature.”

These words were spoken out loud in August of 1856 at the 10th annual meeting of AAAS, though not by their author. The speaker continues on to suggest that, “[if] at one period of its history the air had mixed with [carbon dioxide] a larger proportion than at present, an increased temperature…must have necessarily resulted.” This paper was the first recorded finding of the link between carbon dioxide and global warming, and was discovered by the female physicist and scientist, Eunice Foote. While these findings were remarkable on their own, she synthesized the implications to correctly state that carbon dioxide concentrations in the atmosphere both increase global warming and can explain Earth’s geologic history, specifically regarding the Devonian period1,2.  Despite being on the sidelines of science at the time because of her gender, Eunice Foote provided fundamental and groundbreaking knowledge in the field of gaseous physics. 

Continue reading “Eunice Foote, the original founder of climate change dynamics”

Microscopic Miners: How invisible forces create tropical caves

Featured Image: Scientist Ceth Parker moving through a passageway within an iron formation cave.  Photo courtesy of the University of Akron.

Paper: Enhanced terrestrial Fe(II) mobilization identified through a novel mechanism of microbially driven cave formation in Fe(III)-rich rocks

Authors: Ceth W. Parker, John M. Senko, Augusto S. Auler, Ira D. Sasowsky, Frederik Schulz, Tanja Woyke, Hazel A. Barton

Consider this: microscopic creatures literally moving tons of rock before your very eyes. It seems too fantastical, but maybe not if you’re in the Brazilian tropics. In new work, scientists have detailed these stealthy and microscopic processes, naming a new cave generation pathway called exothenic biospeleogenesis, or “behind-wall life-created” caves.

Continue reading “Microscopic Miners: How invisible forces create tropical caves”

Forests under (mega)fire in the Pacific Northwest

Accompaniment to the Third Pod from the Sun Episode

Featured Image: “Forests under fire” original artwork by Jace Steiner. Used with permission.

Paper: Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA

Authors: Matthew Reilly, Aaron Zuspan, Joshua Halofsky, Crystal Raymond, Andy McEvoy, Alex Dye, Daniel Donato, John Kim, Brian Potter, Nathan Walker, Raymond Davis, Christopher Dunn, David Bell, Matthew Gregory, James Johnston, Brian Harvey, Jessica Halofsky, Becky Kerns

The natural legacy of fire in the Pacific Northwest (PNW) is complex.  The variable geography of the wet, westside temperate rain forests, to the dry, high elevation forests beyond the Cascade crest make it difficult to find a “catch-all” description of PNW forest fires.  For instance, drier forests of ponderosa pines in eastern Washington experience more frequent, low-severity fires while the temperate rain forests of western Oregon rarely see fires.  However, scientists can reconstruct historical fire regimes and identify centuries-long patterns of burning related to precipitation, temperature, and ignition frequency to define what are historical patterns and what is modern climate change.  In 2020, multiple megafires (a wildfire that burnt more than 100,000 acres of land) broke out in the typically wet parts of Oregon and Washington, burning more than 700,000 acres combined.  This event is called the 2020 Labor Day Fires, and Matthew Reilly and colleagues have revealed these fires were likely part of historical regimes and not a product of accelerated climate change.

Continue reading “Forests under (mega)fire in the Pacific Northwest”

Greenhouse gasses, ice cover, and the deep ocean shape Earth’s paleoclimate in unexpected ways

Featured Image: Line-scan image of sediment core from the Bay of Bengal. Image from the International Ocean Discovery Program. A. Volcanic ash associated with the Toba eruption. B. Pyrite-, foraminifer-, and shell fragment–rich sandy patch in foraminifer-rich clay with biosilica. C. Scaphopod in nannofossil-rich clay with foraminifers. D. Wood fragments in clay. E. Large dark gray burrow filled with the overlying sediment. F. Core disturbance (cracks) due to gas release when core liner was drilled on the catwalk. G. Minor core disturbance due to mud and water flow-in along the edges of the liner (~1 cm thickness).

Paper: Increased interglacial atmospheric CO2 levels followed the mid-Pleistocene Transition

Authors: Masanobu Yamamoto, Steven C. Clemens, Osamu Seki, Yuko Tsuchiya, Yongsong Huang, Ryouta O’ishi, Ayako Abe-Ouchi

Mention of the ice age may conjure up images of giant mastodons, ferocious saber-tooth tigers, or of a prehistoric squirrel trying so desperately to secure his acorn—all taking place on the vast amount of ice that covered portions of the globe. We know that periods of ice cover followed by stretches of warm weather was a standard pattern in our Earth’s history*, but there was something special about the last ice age (during the Pleistocene) and how long it hung around. 

Continue reading “Greenhouse gasses, ice cover, and the deep ocean shape Earth’s paleoclimate in unexpected ways”

Breaking: all living things may produce methane, including you

Featured Image: Collage of Life.  Image courtesy Bryan K. Lynn.

Paper: Methane formation driven by reactive oxygen species across all living organisms

Authors: Leonard Ernst, Benedikt Steinfeld, Uladzimir Barayeu, Thomas Klintzsch, Markus Kurth, Dirk Grimm, Tobias P. Dick, Johannes G. Rebelein, Ilka B. Bischofs, Frank Keppler

You may have heard how methane is a “potent greenhouse gas.”  But what does that mean?  Even though there are fewer molecules released in our atmosphere when compared to carbon dioxide, methane holds onto heat 25 times more effectively than carbon dioxide.  In other words, if carbon dioxide acts as a linen sheet around Earth, then methane is akin to a downy comforter. 

Continue reading “Breaking: all living things may produce methane, including you”

To understand Mars, scientists study Earth – but is this enough?

Featured Image: Top: Valley of the Moon, Atacama Desert, San Pedro, Chile, Earth.  Image courtesy Alf Igel.  Bottom: Jezero Crater, Syrtis Major Quadrangle, Mars.  Image courtesy Kevin M. Gill.

Paper: Gradient studies reveal the true drivers of extreme life in the Atacama Desert

Authors: D. Boy, R. Moeller, L. Sauheitl, F. Schaarschmidt, S. Rapp, L. van den Brink, S. Gschwendtner, R. Godoy Borquez, Francisco J. Matus, M. A. Horn, G. Guggenberger, J. Boy

Space.  The final frontier.  Or is it?  Boy and colleagues are not presenting the voyages of the Starship Enterprise, rather the clever investigation of scientists on Earth.  Their continuing mission: to understand the development of life in extreme environments, and how certain places on Earth geologically represent Mars and other planet analogues.  While Boy and colleagues are limited on intergalactic travel, their recent work clearly the defines expectations, inferences, and consequences of using a site on Earth as a replacement for another planet.  They conclude that the nearby climate and environment surrounding these analogue locations may lead to inaccurate comparisons, by altering soil moisture and salt content, for example.

Continue reading “To understand Mars, scientists study Earth – but is this enough?”

The surprising effects rivers have on our atmosphere

Featured Image: Rio Bermejo meeting up with the Paraguay River, on the boarder of Formosa and Chaco Provinces.  Image by Mapio. Used with permision.

Paper: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection

Authors: Marisa Repasch, Joel S. Scheingross, Niels Hovius, Maarten Lupker, Hella Wittmann, Negar Haghipour, Darren R. Gröcke, Oscar Orfeo, Timothy I. Eglinton, and Dirk Sachse

In our current era of rapid climate change, it is critical we understand how every aspect of the Earth system affects carbon cycling.  New work by Marisa Repasch and colleagues shows that rivers, under the right conditions, might be able to sequester more carbon in the sediments than released into the atmosphere. However, these findings may reveal how human impacts to rivers will likely increase the amount of carbon released to the atmosphere.

Continue reading “The surprising effects rivers have on our atmosphere”

Metal-Eating Microbes Who Breathe Methane

Featured Image: Murky pond in Alaska with “rusty” iron-filled sediments. Image courtesy Jessica Buser. Used with permission.

Paper:  Sulfate- and iron-dependent anaerobic methane oxidation occurring side-by-side in freshwater lake sediment

Authors: Alina Mostovaya, Michael Wind-Hansen, Paul Rousteau, Laura A. Bristow, Bo Thamdrup

The table has been set and the food is all prepared. But this is no ordinary dinner party, it’s a microbe party! The guests sit down and proceed to dig into the main course; sulfur, rusty iron, and methane. Curiously, the guests are feeding each other, not themselves! This image seems pretty weird to us humans, but it’s a delight to these microbes. This collaborative method of eating occurs in pond and lake mud all around the world. In a new study, Mostovaya and colleagues describe one such feast in Danish Lake Ørn, that is not only collaborative but may mitigate climate change.

Continue reading “Metal-Eating Microbes Who Breathe Methane”

Highway Maintenance “Drives” Carbon Release in Forests

Featured Image: Forest and highway between Trójmiasto and Gdynia, Northern Poland. Image courtesy Robin Hammam.

Paper: The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

Authors: Dawid Kupka, Mateusz Kania, Piotr Gruba

There has been a lot of talk about transportation as of late with America’s “Build Back Better Act”.  While these political decisions are partially informed by scientific research around climate change, particularly in the United States (where 30% of greenhouse gas emissions result from transportation by road, rail, and air each year), the negative impacts of transportation infrastructure on the climate and local ecosystems are often lost in political discussions.  In a new study in Scientific Reports, Kupka and colleagues discuss the broader impacts of highway maintenance on nearby forest soil ecosystems, finding that roadways themselves can increase carbon dioxide emissions by disrupting local carbon cycles.

Continue reading “Highway Maintenance “Drives” Carbon Release in Forests”

Ancient trees tell the story of modern climate change

Featured Image: Larch trees.  Image courtesy North Cascades National Park, used with permission.

Paper: Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

Authors: Olga V. Churakova Sidorova, Rolf T. W. Siegwolf, Marina V. Fonti, Eugene A. Vaganov, Matthias Saurer

Seemingly straight out of a fairytale, ancient trees are able to convey details about Earth’s complex history to the scientists willing and able to listen.  Deep in the Siberian Arctic lie the secrets of past weather events, ocean currents, and droughts that occurred thousands of years ago, locked away in petrified wood and in the oldest living larch trees.  We often hear in the news how the Siberian forest is victim to extreme drought and fire—something that is new as of the recent century.  But how “new” are these events, and what exactly is perpetuating this new cycle? 

Continue reading “Ancient trees tell the story of modern climate change”