What do deep-sea sediment cores tell us about past fish populations?

Black background with fish teeth of different heights and widths

Featured Image: Ichthyoliths (microfossil fish teeth) from deep-sea sediment cores displaying the variety of tooth morphology. Photo courtesy of Elizabeth Sibert, lead author of the paper.

Paper: No state change in pelagic fish production and biodiversity during the Eocene–Oligocene transition

Authors: Elizabeth C. Sibert, Michelle E. Zill, Ella T Frigyik, Richard D. Norris

The seafloor at the bottom of the ocean records what is happening in the water above. Sediments capture silica from diatoms and phytoplankton, carbon from zooplankton poop and detrital marine snow, and teeth after dead fish sink. This last piece of evidence is particularly important: fossilized fish teeth or icthyoliths can help estimate past fish abundance and can show shifts in fish species or biodiversity in the ocean over time.

Continue reading “What do deep-sea sediment cores tell us about past fish populations?”

New 23 million year record of atmospheric carbon dioxide highlights current human influence on the atmosphere

Paper: A 23 m.y. record of low atmospheric CO2

Featured image: Modern vascular land plants (Raphanus sativus), growing in a carbon dioxide experiment (Figure 1A from Jahren et al., 2008)

Authors: Ying Cui, Brian A. Schubert, A. Hope Jahren

Carbon dioxide is a greenhouse gas, trapping warmth within the Earth’s atmosphere. Sixty years of measurements on Hawaii’s Mauna Loa summit have shown rising amounts of carbon dioxide in our atmosphere. In addition, the carbon dioxide levels in our modern atmosphere are  significantly higher than  those we have seen on Earth over the last 800,000 years, according to measurements on bubbles of ancient air trapped in  Antarctic ice. When combined with measurements of global temperatures, these direct measurements are irrefutable evidence for rapid modern climate change. However, understanding our current position relative to Earth’s climate farther back in time is trickier, since scientists have to estimate atmospheric composition indirectly (through a “proxy”). A new study tackles this problem with a new method of estimating past carbon dioxide, showing  that modern carbon dioxide levels have been unprecedented since at least 7 million years ago.

Continue reading “New 23 million year record of atmospheric carbon dioxide highlights current human influence on the atmosphere”

Got an apatite for minerals? Of quartz you do!

Minerals, those naturally occurring, inorganic materials with well-defined chemical compositions and crystal structures have long influenced human culture and fascinated (geo)scientists. Some of the earliest descriptions of minerals and their uses date back to Ancient Egypt, recorded on papyri, as well as on stelae (blocks of stone or wood), and ostraca (clay tablets or pottery shards). Minerals and their uses have been intertwined with human history for thousands of years from the gemstone bracelets of the Egyptians and their belief that color was a strong reflection of personality (color symbolism, e.g., the use of gold for crowns on pharaohs and its association with the sun), to the Greeks and their wide use of gemstones in necklaces, and bracelets. 

Continue reading “Got an apatite for minerals? Of quartz you do!”

Did a change in phosphorus cycling lead to the diversification of macroscopic life?

Featured image: The earliest examples of life on Earth are microbial buildups known as stromatolites, like these 1.8 Ga old examples from Great Slave Lake, Canada. What changed on our planet for organisms to evolve from microbes to macroscopic lifeforms?

Paper: Ediacaran reorganization of the marine phosphorus cycle
Authors: Laakso, T.A., Sperling, E.A., Johnston, D.T., and Knoll, A.H.

This is a guest post by Akshay Mehra and Danielle Santiago Ramos. Contact us to submit a guest post of your own!

The history of life on Earth—as recorded in the rock record—stretches back to more than 3.5 billion years ago (Ga). The earliest fossilized remains of living organisms appear in the form of stromatolites, which are laminated constructions built in part (or completely) by microbes. While there have been some tantalizing hints that living organisms were mobile by 2.1 Ga (Albani et al., 2019) and multicellular by 1.6 Ga (Bengston et al. 2017), what is definitively known is that by ~750 million years ago (Ma), complex microscopic lifeforms were widespread on our planet. As time progressed, life became macroscopic. Then, during the Cambrian Era (beginning 539 Ma), most modern phyla (i.e. a grouping of organisms based on body plans) appeared in a flurry of diversification so drastic that it has been nicknamed “the Cambrian explosion.” Scientists are still trying to understand what combination of physical and biological processes may have driven the Cambrian explosion.

Continue reading “Did a change in phosphorus cycling lead to the diversification of macroscopic life?”

Warmer climate could mean corals thrive in the southern Great Barrier Reef

Featured image: Jeremy Bishop on Pexels

Paper: Re-evaluating mid-Holocene reef “turn-off” on the inshore Southern Great Barrier Reef
Authors: Leonard, N.D., Lepore, M.L., Zhao, J.X., Rodriguez-Ramirez, A., Butler, I.R., Clark, T.R., Roff, G., McCook, L., Nguyen, A.D., Feng, Y. and Pandolfi, J.M.

A new study has reconstructed the complex growth history of coral communities in the Keppel Islands, southern Great Barrier Reef, revealing that the area might provide a safe-haven for coral under climate change.

Continue reading “Warmer climate could mean corals thrive in the southern Great Barrier Reef”

Marsquakes give scientists an InSight to Mars

Featured image: An artist’s concept of NASA’s InSight lander on Mars with a cutaway of the surface below. Credit: IPGP/Nicolas Sarter.

Paper: Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data

Authors: Philippe Lognonné et al.,

Scientists are able to ‘see’ the internal structure of the Earth based on seismic waves recorded during Earthquakes. Earthquakes send seismic waves out in all directions with two main types: (1) surface waves are the major culprits of Earthquake damage as they remain on the surface; (2) faster body waves can travel down within Earth’s interior. The body waves are the fastest seismic waves, consisting of the first (primary; P-wave) and second (secondary, S-wave) waves to arrive at a location away from the epicentre of an Earthquake.

Continue reading “Marsquakes give scientists an InSight to Mars”

Do Microbes Release Fluorine from Rocks?

Image of soil microcosm

Featured Image used with permission of photographer (Cassi Wattenburger)

Paper: Indigenous microbes induced fluoride release from aquifer sediments

Authors: Xubo Gao, Wenting Luo, Xuesong Luo, Chengcheng Li, Xin Zhang, Yanxin Wang

My science textbook taught me that fluorine (F) was really important for dental health, and I’ve since learned that both excessive and insufficient amounts of fluoride in groundwater can cause health issues. While the chemistry behind the release of fluoride ions from rocks or sediments into groundwater is well understood, the microbiology of this process is not. Specifically, scientists have been wondering whether microbes could speed up the release of F from sediments into groundwater. 

Continue reading “Do Microbes Release Fluorine from Rocks?”

The Extraction of Hidden Waters: 11th century Persian scientist laid the foundations for hydrology and water engineering

Qanat: Aerial View

Featured Image: Areal view of the vertical shafts of a qanat in Jupar, Iran. S.H. Rashedi / CC BY-ND via UNESCO.

Paper: The millennium-old hydrogeology textbook The Extraction of Hidden Waters by the Persian mathematician and engineer Abubakr Mohammad Karaji (953 CE–1029 CE)

Authors: Ataie-Ashtiani, B., & Simmons, C. T.

Reliable sources of water are essential for every civilization. However, the Western science of hydrology is relatively young. It started perhaps at the turn of the 19th century when John Dalton completed the first water balance for England and Wales by estimating the amount of water that fell as precipitation and left as evaporation and flow from rivers to oceans. Since ancient times, civilizations have built water infrastructure like aqueducts and wells, and writings by Aristotle and Plato suggest that the ancient Greeks had a basic understanding of the water cycle. Though in many respects, the study of hydrology in Europe and the Mediterranean stagnated between the time of these early philosophers and the 19th century.

Continue reading “The Extraction of Hidden Waters: 11th century Persian scientist laid the foundations for hydrology and water engineering”

Hillsides collapsing into Arctic streams can trigger CO2 release to the atmosphere

Permafrost thaw slumps draining into a river on the Peel Plateau in western Canada

Featured Image: Permafrost thaw slumps draining into a river on the Peel Plateau in western Canada. Photo courtesy Scott Zolkos, lead author of the paper.

Paper: Experimental Evidence That Permafrost Thaw History and Mineral Composition Shape Abiotic Carbon Cycling in Thermokarst-Affected Stream Networks

Authors: Zolkos, Scott & Suzanne E. Tank.

The rivers and streams of the Arctic transfer atmospheric heat into the surrounding permafrost (perennially frozen) soil. At the same time, surface soils up to 1 meter deep undergo annual freeze-thaw cycles. When warmer air arrives in the summer months, the combination of warming air and river water can thaw large chunks of ice-rich permafrost soil along the stream’s edge. Thawed permafrost breaks away from the surrounding hillsides and causes catastrophic slope failures, transporting huge amounts of sediment into the nearby waterways. As the stream water becomes murky it takes on the appearance of chocolate milk, and simultaneously, the geochemistry of the water changes.

Continue reading “Hillsides collapsing into Arctic streams can trigger CO2 release to the atmosphere”

Lava tubes on the Moon and Mars might be big and stable enough for humans to live in

Featured image: A hole with approximately 150 metres diameter, indicating a potential lava tube on Mars. Public Domain (NASA/JPL/University of Arizona).

Paper: Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology

Authors: Francesco Sauro, Riccardo Pozzobon, Matteo Massironi, Pierluigi De Berardinis, Tommaso Santagata, Jo De Waele.

Editor’s note: due to an editorial mixup, two Geobites authors—unbeknownst to each other—wrote about the same paper. We encourage readers to take advantage of this opportunity to learn how two different geoscientists would describe the same exciting development in their field. The other post is here.

When you picture living on another planet, you probably don’t imagine living underground. But lava tubes – underground cave systems formed by flowing lava – are more sheltered from radiation and micrometeorites than the surface of the Moon or Mars. They are also more stable in temperature and could contain water ice. For these reasons both popular culture, such as the National Geographic Mars series, and scientists alike, have hypothesised that humans might live in them one day. Now, a new review and analysis study led by Francesco Sauro at the University of Bologna has sought to investigate potential lava tubes on both the Moon and Mars.

Continue reading “Lava tubes on the Moon and Mars might be big and stable enough for humans to live in”