Nuevo soporte para el origen de la vida en fumarolas hidrotermales alcalinas

Imagen de la portada: Tapetes blancos floculantes dentro y alrededor de fumarolas blancas extremadamente gaseosas de alta temperatura (>100°C, 212°F) en la Fumarola Champagne. Copyright: CC BY-SA 4.0 a través de wikimedia commons.

Artículo: Chimeneas de óxidos blancos y verdes acumulan ARN en un jardín químico ferruginoso.

Autores: Vanessa Helmbrecht, Maximilian Weingart, Frieder Klein, Dieter Braun, William D. Orsi

Cuando pensamos en mundos extraterrestres, posiblemente evocamos una imágen de vastos oceános con estructuras altas verticales dispersas, como columnas o torres. Al observar imágenes de fumarolas hidrotermales alcalinas, te darás cuenta de que esos mundos extraterrestres no existen solamente en las películas de ciencia ficción. Las fumarolas hidrotermales alcalinas son ambientes marinos profundos abundantes en la Tierra hace más de 4000 millones de años, caracterizados por chimeneas blancas globulares y puntiagudas que se elevan desde el fondo del mar.  Ofrecen una combinación de condiciones químicas en las que pueden haber surgido las primeras formas de vida en la Tierra. Sin embargo, las fumarolas hidrotermales alcalinas se han considerado inhóspitas para la formación de ácidos nucleicos, las moléculas que almacenan información en todas las células vivas. Un artículo nuevo de investigadores de LMU Munich reta esta suposición al proporcionar evidencia clave para la estabilización de ácidos nucleicos en fumarolas hidrotermales alcalinas, un descubrimiento que podría hacer estos ambientes los candidatos más adecuados para el origen de la vida en la Tierra.

Continue reading “Nuevo soporte para el origen de la vida en fumarolas hidrotermales alcalinas”

New support for the origin of life in alkaline hydrothermal vents

Featured image: White flocculent mats in and around the extremely gassy, high-temperature (>100°C, 212°F) white smokers at Champagne Vent. Copyright: CC BY-SA 4.0 via. wikimedia commons.

Paper: White and green rust chimneys accumulate RNA in a ferruginous chemical garden

Authors: Vanessa Helmbrecht, Maximilian Weingart, Frieder Klein, Dieter Braun, William D. Orsi

When we think of alien worlds, we may evoke an image of vast oceans with tall scattered vertical structures, like columns or towers. By looking at pictures of alkaline hydrothermal vents, you will realize that such alien worlds do not just exist in science fiction movies. Alkaline hydrothermal vents are deep ocean environments widespread on Earth more than 4 billion years ago, in which light globular and spiky chimneys rise from the dark ocean floor. They offer a combination of chemical conditions that may have supported the first forms of life on Earth. However, alkaline hydrothermal vents have been considered inhospitable for the formation of nucleic acids, the information-storage molecules present in all living cells. A new paper from researchers at LMU Munich challenges this assumption by providing critical evidence for the stabilization of nucleic acids in alkaline hydrothermal vents, a discovery that would make these environments the most suitable candidates for the origin of life on Earth.

Continue reading “New support for the origin of life in alkaline hydrothermal vents”

Making Mountains Out of Molehills? Long-Term Geomorphic Surface Impacts of Mountaintop Removal Mining

Featured Image:  Mountaintop removal mining site in Appalachia. Copyright: CC BY-SA 4.0 via. wikimedia commons.

Report: Peripheral gully and landslide erosion on an extreme anthropogenic landscape produced by mountaintop removal coal mining (2020)

Authors: Miles Reed & Dr. Steve Kite

There’s a general consensus that coal mining is ‘bad’ for the environment, but beyond carbon emissions, what is its visible, physical impact on our surroundings? What lasting damage does mining create on the Earth’s surface? The answer is that it has a tremendous impact; specifically, mining in Appalachia is linked to distorting the natural flow of water on the landscape, which creates ripple (no pun intended) effects on the greater environment. A recent study by Reed and Kite details those effects on Appalachian landscapes, directly linking mountaintop mining to erosion and landslides. Now, as worries about access to safe, clean water being jeopardized by fossil fuel production abound nationwide, exploring the impacts of mountaintop mining on Appalachian freshwater becomes incredibly important with immediate and personal impacts.

Continue reading “Making Mountains Out of Molehills? Long-Term Geomorphic Surface Impacts of Mountaintop Removal Mining”

How Much is War Fuelling the Climate Crisis?

Featured Image: Global militaries are a major contributor to climate change, however, we face many challenges when assessing their environmental footprint. Copyright: CC BY-SA 4.0 via. wikimedia commons.

Report: Estimating the Military’s Global Greenhouse Gas Emissions (2022)

Authors: Dr. Stuart Parkinson & Linsey Cottrell

Organisations: Scientists for Global Responsibility & Conflict and Environment Observatory

War is likely to worsen in the near-future as climate change forces more disasters, political instability, and poverty onto the planet and strains resource supplies. Yet war is not just a product of climate change: it is also a major cause. In addition to the societal devastation it creates, militarism is a major emitter of greenhouse gases and contributor to environmental degradation. Politicking from the worst emitters has ensured that military emissions are shielded from the same type of accountability seen across other sectors such as agriculture, transport, land use, technology, and waste. For example, the latest installment of the IPCC report barely mentioned military emissions despite its immensely detailed analysis of other sectors. A recent report from Stuart Parkinson (Scientists for Global Responsibility) and Linsey Cottrell (Conflict and Environment Observatory) helps correct this oversight and unpacks the impact of war on climate change.

Continue reading “How Much is War Fuelling the Climate Crisis?”

How sediments can save drowning river deltas

Featured image: A satellite image of the Ganges – Brahmaputra delta along the Bangladesh coastline.captured by the Envisat satellite of the European Space Agency (ESA). The image also shows sediment plumes in the coastal area. (Image credit: ESA CC BY-SA 3.0 IGO)

Paper: Sediment delivery to sustain the Ganges- Brahmaputra delta under climate change and anthropogenic impacts

Authors: Jessica L. Raff, Steven L. Goodbred Jr., Jennifer L. Pickering, Ryan S. Sincavage, John C. Ayers, Md. Saddam Hossain, Carol A. Wilson, Chris Paola, Michael S. Steckler, Dhiman R. Mondal, Jean-Louis Grimaud, Celine Jo Grall, Kimberly G. Rogers, Kazi Matin Ahmed, Syed Humayun Akhter, Brandee N. Carlson, Elizabeth L. Chamberlain, Meagan Dejter, Jonathan M. Gilligan, Richard P. Hale, Mahfuzur R. Khan, Md. Golam Muktadir, Md. Munsur Rahman, Lauren A. Williams

The Ganges – Brahmaputra delta is the largest river delta in the world, covering an area of 1,00,000 sq. km. About two-thirds of the delta lies in Bangladesh, and the rest in the Indian state of West Bengal. Today, sea level rise due to climate change poses a massive challenge to the delta region which more than 200 million people call home!

Continue reading “How sediments can save drowning river deltas”

Humpback Whale Singing at a Norwegian Feeding Ground

Humpback Whales Underwater

Papers: Changes in humpback whale song structure and complexity reveal a rapid evolution on a feeding ground in Northern Norway; Humpback Whale (Megaptera novaeangliae) Song on a Subarctic Feeding Ground

Authors: Saskia C. Tyarks, Ana S. Aniceto, Heidi Ahonen, Geir Pedersen and Ulf Lindstrøm

Featured Image: Humpback whales swimming near Tonga. Photo by Elianne Dipp.

US Navy engineer Frank Watlington was searching for Russian submarines in the 1950s when his underwater microphone picked up some otherworldly noises: humpback whale singing. He was amazed to realize that the whale vocalizations were arranged in an intricate pattern that repeated itself in a song-like manner, with a similar structure to music composed by humans. 

Continue reading “Humpback Whale Singing at a Norwegian Feeding Ground”

Nature’s Secret Weapon: How Nature-based Solutions Can Tackle Climate Change and More

Featured Image: Two striking illustrations of the river Culm catchment in the UK. Created by local artist Richard Carman, the left image shows the existing (degraded) situation, while the right image depicts a co-created nature-based solutions scenario developed in collaboration with local stakeholders, including farmers and landowners, as part of the Co-Adapt project. These illustrations provide a clear visual representation of how nature-based solutions can be used to address environmental challenges in the area.

Papers: Soil carbon sequestration impacts on global climate change and food security; Climate-smart Soils; IPCC (2014) Report on Mitigation of Climate Change; Synthesizing US River Restoration Efforts; Limited potential of no-till agriculture for climate change mitigation; Sequestering carbon in soils of agro-ecosystems; Crop Residue Removal Impacts on Soil Productivity and Environmental Quality; Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities.

Authors: Rattan Lal, Keith Paustian, Johannes Lehmann, Stephen Ogle, David Reay, Philip G. Robertson, Pete Smith, Humberto Blanco-Canqui and more.

Are you worried about the impact of climate change on our planet and wondering what you can do to help? Look no further than nature itself, because nature-based solutions may just hold the key to mitigating its effects through soil carbon sequestration.

Climate change is an ongoing problem that poses a significant threat to our planet. Many strategies have been proposed to mitigate climate change, including renewable energy, carbon capture and storage, and nature-based solutions (NbS). Among these, NbS have gained considerable attention because they offer a range of benefits, including reducing greenhouse gas emissions, mitigating the impact of natural disasters such as floods and droughts, and improving biodiversity.

But what are NbS, and how can they help in mitigating climate change? Nature-based solutions are interventions that work with nature to address environmental challenges. These solutions involve restoring, protecting, and managing ecosystems such as forests, wetlands, and grasslands. One of the significant benefits of NbS is soil carbon sequestration, which refers to the process of capturing carbon dioxide from the atmosphere and storing it in soil.

Soil carbon sequestration is a powerful tool to mitigate climate change because it can store carbon for decades or even centuries. According to the Intergovernmental Panel on Climate Change (IPCC), soil carbon sequestration can reduce atmospheric carbon dioxide concentrations by up to 15% by 2050. This approach has gained traction in Europe, where various projects have been implemented to sequester carbon in soils.

For example, in the UK, the Farm Carbon Cutting Toolkit is a non-profit organization that works with farmers to adopt practices that increase soil carbon levels. One such practice is the use of cover crops, which are planted between cash crops to prevent soil erosion, improve soil health, and increase carbon sequestration. According to the organization’s website, “the planting of cover crops, such as clover, can increase soil organic matter and carbon content by up to 15% over ten years.”

Similarly, in France, the 4 per 1000 initiative aims to increase soil carbon content by 0.4% per year. This initiative focuses on a range of NbS, such as agroforestry, conservation agriculture, and the use of biochar. According to a study published in the journal Nature, increasing soil carbon by 0.4% per year could offset around 3.5 billion tonnes of carbon dioxide emissions.

Soil carbon sequestration through NbS not only helps mitigate climate change but also has several co-benefits. For example, it can improve soil health, increase agricultural productivity, and reduce the risk of natural disasters such as floods and droughts. As Dr. Pauline Chivenge, a soil scientist at the University of Zimbabwe, explains:

”If we improve soil health, we can improve crop yields, and that translates into better nutrition and food security for communities”

However, it’s important to note that soil carbon sequestration alone cannot solve the climate crisis. We also need to reduce our reliance on fossil fuels, promote renewable energy, involve the local community and implement other sustainable practices. Nonetheless, soil carbon sequestration is an important piece of the puzzle and should be considered as part of a comprehensive climate action plan.

In conclusion, nature-based solutions such as soil carbon sequestration offer a promising strategy for mitigating climate change while providing multiple benefits. By implementing NbS practices such as agroforestry, cover crops, and conservation agriculture, we can increase soil carbon levels, improve soil health, and enhance biodiversity. By implementing NbS practices, we can all contribute to mitigating the impacts of climate change and promoting sustainable development. Here are some ways you can get involved:

  1. Educate yourself: Learn about the benefits and potential of nature-based solutions in addressing environmental challenges. Read about case studies, best practices, and research on nature-based solutions.
  2. Advocate for nature-based solutions: Speak up about the benefits of nature-based solutions in conversations with family, friends, colleagues, and community members. Encourage local leaders to consider nature-based solutions in planning and decision-making.
  3. Support conservation efforts: Donate to conservation organizations or volunteer for conservation efforts in your community. Protecting natural areas can support nature-based solutions and the ecosystem services they provide.
  4. Plant trees and native plants: Trees and native plants play an important role in sequestering carbon, improving air and water quality, and supporting biodiversity. Planting trees and native plants in your yard or community can support nature-based solutions.
  5. Support sustainable agriculture: Sustainable agriculture practices, such as agroforestry and regenerative agriculture, can support nature-based solutions by promoting soil health, biodiversity, and carbon sequestration.
  6. Participate in citizen science: Citizen science projects can provide valuable data for understanding environmental challenges and the effectiveness of nature-based solutions. Participate in citizen science projects in your community or online
  7. Support green infrastructure: Green infrastructure, such as green roofs and bioswales, can support nature-based solutions by reducing stormwater runoff and improving air quality. Encourage your community to invest in green infrastructure or start from your own garden by removing paved surfaces and replacing them with greenery, make your own compost etc..
  8. Support policies and funding for nature-based solutions: Policy changes and funding can help support the uptake of nature-based solutions at local and national levels. Support policies and funding initiatives that promote nature-based solutions.

By taking action and supporting NbS practices, we can all make a difference in the fight against climate change. As Dr. Bedford, a climate change expert, reminds us:

”We all have a role to play in addressing the challenges of climate change, and implementing nature-based solutions is one of the most effective ways to do so.”


Nature’s Secret Weapon: How Nature-based Solutions Can Tackle Climate Change and More by Borjana Bogatinoska is licensed under a Creative Commons Attribution 4.0 International License.

Eunice Foote, the original founder of climate change dynamics

Featured Image: Artist rendition of Eunice Foote conducting research on compressed gasses. Image courtesy Carlyn Iverson, NOAA.  Featured image courtesy GNU Free Documentation License

Papers: Circumstances affecting the heat of the Sun’s rays; Understanding Eunice Foote’s 1856 experiments: heat absorption by atmospheric gases

Authors: Eunice Foote; Joseph Ortiz and Ronald Jackson

“An atmosphere of [carbon dioxide] would give our Earth a high temperature.”

These words were spoken out loud in August of 1856 at the 10th annual meeting of AAAS, though not by their author. The speaker continues on to suggest that, “[if] at one period of its history the air had mixed with [carbon dioxide] a larger proportion than at present, an increased temperature…must have necessarily resulted.” This paper was the first recorded finding of the link between carbon dioxide and global warming, and was discovered by the female physicist and scientist, Eunice Foote. While these findings were remarkable on their own, she synthesized the implications to correctly state that carbon dioxide concentrations in the atmosphere both increase global warming and can explain Earth’s geologic history, specifically regarding the Devonian period1,2.  Despite being on the sidelines of science at the time because of her gender, Eunice Foote provided fundamental and groundbreaking knowledge in the field of gaseous physics. 

Continue reading “Eunice Foote, the original founder of climate change dynamics”

How Elephants Impact the Savannah of South Africa: A Case Study in Rewilding

Featured Image: African Savannah elephants have been long-renowned for their importance in shaping the land they live on. Copyright: CC BY-SA 4.0, via wikimedia commons.

Paper: Elephant rewilding affects landscape openness and fauna habitat across a 92-year period

Authors: Christopher E. Gordon, Michelle Greve, Michelle Henley, Anka Bedetti, Paul Allin & Jens-Christian Svenning

Elephants have an enormous impact on their surrounding environment, particularly through their impact on the openness of the savannah, earning them a reputation as “ecosystem engineers”. Species like elephants, with important influences on the landscape around them, are being studied in efforts to rewild parts of the planet; restoring ecosystems in ways that they can sustain themselves. A recent paper by Gordon et al. explores elephant rewilding across South Africa and assesses its effect on vegetation and animal species across various nature reserves and time spans dating back to 1927. 

Continue readingHow Elephants Impact the Savannah of South Africa: A Case Study in Rewilding

Soot in the water – Understanding oceans’ carbon cycle

Featuring image: soot produced by incomplete burning by fossil fuels. Picture: Pxhere, Public Domain (C0)

Paper: Hydrothermal-derived black carbon as a source of recalcitrant dissolved organic carbon in the ocean

Authors: Y. Yamashita, Y. Mori, H. Ogawa

Earth’s oceans not only harbour a multitude of organisms, they are also a major carbon sink, compensating the increased production of carbon by humans and thus slowing down climate change. But could hydrothermal vents be another source of carbon in the oceans themselves?

A lot of the carbon that is produced on land by organisms and industry is transported into the oceans by rivers and wind. Black carbon (or soot), which is for example produced by incomplete burning of fossil fuels, can be stored in the oceans and remain inaccessible for long periods of time (several thousand years). But is all the stored black carbon coming from land sources? Although scientists already had some hints that not all dissolved black carbon (DBC) in the oceans comes from the land, a reliable evidence for a DBC source within the oceans remained elusive. The research from a group from Japan was able to shine new light on this question by looking at hydrothermal vents in the Pacific Ocean.

Continue reading “Soot in the water – Understanding oceans’ carbon cycle”