Highway Maintenance “Drives” Carbon Release in Forests

Featured Image: Forest and highway between Trójmiasto and Gdynia, Northern Poland. Image courtesy Robin Hammam.

Paper: The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

Authors: Dawid Kupka, Mateusz Kania, Piotr Gruba

There has been a lot of talk about transportation as of late with America’s “Build Back Better Act”.  While these political decisions are partially informed by scientific research around climate change, particularly in the United States (where 30% of greenhouse gas emissions result from transportation by road, rail, and air each year), the negative impacts of transportation infrastructure on the climate and local ecosystems are often lost in political discussions.  In a new study in Scientific Reports, Kupka and colleagues discuss the broader impacts of highway maintenance on nearby forest soil ecosystems, finding that roadways themselves can increase carbon dioxide emissions by disrupting local carbon cycles.

Continue reading “Highway Maintenance “Drives” Carbon Release in Forests”

The Charney Report vs IPCC6: What’s changed in climate science in the last 40 years?

NASA satellite image of Earth from space, showing California wildfire smoke visible in the atmosphere.

Papers: Carbon Dioxide and Climate, a Scientific Assessment by Charney et. al (1979);
Climate Change 2021: The Physical Science Basis by the IPCC (2021)

Right now in Glasgow, Scotland, representatives of world governments and other parties are currently gathering yet again to negotiate political solutions to climate change at COP26. This is the 26th semi-annual Conference of the Parties on climate change, but the history of our understanding of the problem — and attempts to deal with it — goes back even further than that. Speaking strictly of the science of global warming and its effects, what do we know now that the participants of the first COP did not?

Continue reading “The Charney Report vs IPCC6: What’s changed in climate science in the last 40 years?”

Ancient Explosive Volcanoes on Mars

Featured image: a mushroom shaped volcanic plume arising from the explosive activity of Redoubt volcano, Alaska in 1990. Credit: R. Clucas.

Paper: Caldera Collapse and Volcanic Resurfacing in Arabia Terra Provide Hints of Vast Under-Recognized Early Martian Volcanism

Authors: Yin Yau Yoyo Chu, Joseph R. Michalski, Shawn P. Wright, A. Alexander G. Webb.

Mars is a planet of extreme highs and lows containing the solar system’s largest volcano – Olympus Mons – and the largest canyon system – Valles Marineris. Tharsis and Elysium, the planet’s two largest volcanic provinces, are young surface features that were built by basaltic volcanism throughout the Amazonian, the most recent geological era on Mars.

Continue reading “Ancient Explosive Volcanoes on Mars”

What can a delta’s history tell us about groundwater’s future?

Feature image: Mosiac of the the Ganges Delta in false color created with imagery from the Sentinal 2 satilite. CC-By Annamaria Luongo, via Wikimedia Commons


Article: Linking the Surface and Subsurface in River Deltas—Part 2: Relating Subsurface Geometry to Groundwater Flow Behavior
Authors: Xu, Z., Hariharan, J., Passalacqua, P., Steel, E., Paola, C., & Michael, H. A.

Deltas are striking features on Earth’s surface, where rivers meet large water bodies. Their flow spreads out into many channels, depositing the sediment they have been carrying, potentially since their headwaters. This sediment creates and sustains the delta, which can be hundreds of miles across. Beyond being mesmerizing, deltas are essential to human civilization, past and present. Nearly half a billion people live on deltas around the world, where the deposited sediment hosts some of the most fertile agricultural land available.

Continue reading “What can a delta’s history tell us about groundwater’s future?”

ExxonMobil and Climate Change Communications: A Case Study in Propaganda

Feature image from Pixabay

Article: Rhetoric and Frame Analysis of ExxonMobil’s Climate Change Communications

Authors: Geoffrey Supran & Naomi Oreskes


It’s no secret that ExxonMobil is a major architect of the climate crisis. The oil giants have allocated incredible amounts of time and resources to undermining climate science while continuing to pollute the planet. Now, a recent One Earth publication by Geoffrey Supran and Naomi Oreskes unpacks the way Exxon has so successfully spread propaganda while borrowing techniques from another destructive industry: that of tobacco. Exxon and other oil companies (often supported by powerful right-wing think tanks) have embarked on a propaganda campaign that has morphed from outright denial into a campaign aimed at distracting us, dividing political opinion, and convincing us that climate action is hopeless. Supran and Oreskes delve into the evolution of Exxon’s harmful contribution to this narrative.

Continue reading “ExxonMobil and Climate Change Communications: A Case Study in Propaganda”

Ancient trees tell the story of modern climate change

Featured Image: Larch trees.  Image courtesy North Cascades National Park, used with permission.

Paper: Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

Authors: Olga V. Churakova Sidorova, Rolf T. W. Siegwolf, Marina V. Fonti, Eugene A. Vaganov, Matthias Saurer

Seemingly straight out of a fairytale, ancient trees are able to convey details about Earth’s complex history to the scientists willing and able to listen.  Deep in the Siberian Arctic lie the secrets of past weather events, ocean currents, and droughts that occurred thousands of years ago, locked away in petrified wood and in the oldest living larch trees.  We often hear in the news how the Siberian forest is victim to extreme drought and fire—something that is new as of the recent century.  But how “new” are these events, and what exactly is perpetuating this new cycle? 

Continue reading “Ancient trees tell the story of modern climate change”

Call of Cthulhu — Can we uncover the secret of Pluto’s red spots?

Featuring image: Pluto is an icy object in the outer solar system. Its surface it not only covered by ice, but also by an unidentified red material. The largest of these red areas is the Cthulhu region in the southern hemisphere. NASA/JHUAPL/SwRI, public domain (CC0)

Paper: Testing tholins as analogues of the dark reddish material covering Pluto’s Cthulhu region

Authors: M. Fayolle, E. Quirico, B. Schmitt, L. Jovanovic, T. Gautier, N. Carrasco, W. Grundy, V. Vuitton, O. Poch, S. Protopapa, L. Young, D. Cruikshank, C. Dalle Ore, T. Bertrand, A. Stern

Pluto is an icy object beyond Neptune. Its surface is not only covered by innocent pale ice, but also by mysterious dark-red fields. What lurks in these hellish regions and where do they come from?

Far behind Neptune’s orbit, the icy body Pluto orbits our Sun. Pluto got a lot of attention in 2006, when it lost its status as a planet. Since then, it remained as a trans neptunian objects (TNO) of major interest. In 2015, Pluto presented itself in high resolution pictures for the first time in history, when NASA’s space probe New Horizons explored the outer regions of our solar system. What the pictures showed, was not the expected icy desert, but multiple areas of deep red all over Pluto’s surface. The largest of them is located on the southern hemisphere. As a homage to the master of subtle horror, H. P. Lovecraft, the area is called Cthulhu region, because some of the most mysterious and powerful beings in Lovecraft’s world originate from Pluto (in Lovecraft’s stories called Yuggoth). Fayolle and co-workers tried to better understand the origin of these red materials by using laboratory experiments and numerical modelling in comparison with the data recorded by the New Horizons space probe.

Continue reading “Call of Cthulhu — Can we uncover the secret of Pluto’s red spots?”

How does smoke from wildfires in the western U.S. change the regional climate?

Feature image from Pixabay

Article: Biomass Burning Smoke and Its Influence on Clouds Over the Western U. S.

Authors: C. H. Twohy, D. W. Toohey, E. J. T. Levin, P. J. DeMott, B. Rainwater, … & E. V. Fischer

The area burned by wildfires has been increasing in the western U.S. in recent years and is expected to continue to increase due to climate change. In fact, a large wildfire is currently burning in Sequoia National Park in California, threatening to impact some of the largest and oldest living trees in the world. While wildfires directly impact people, wildlife, and the environment in many ways, a lesser-known impact, involving clouds, can influence the regional weather and climate.

Continue reading “How does smoke from wildfires in the western U.S. change the regional climate?”

Mineralogy on other worlds

Featuring image: Titan seen in infrared light. NASA/JPL-Caltech/Stéphane Le Mouélic, University of Nantes, Virginia Pasek, University of Arizona, public domain (CC0)

Paper: Titan in a Test Tube: Organic Co-crystals and Implications for Titan Mineralogy

Authors: M. L. Cable, T. Runčevski, H. E. Maynard-Casely, T. H. Vu and R. Hodyss

Titan, Saturn largest moon, is a strange world. Its surface is covered by ice, dunes and haze of organic molecules and lakes of liquid methane. It even rains. The diversity of surface features may remind us of our own home planet, but the chemistry between these two celestial bodies lies worlds apart.

Continue reading “Mineralogy on other worlds”

Doubling Electricity Production by Storing it!

Pumped Hydro Storage

Paper: The value of CO2-Bulk energy storage with wind in transmission-constrained electric power systems

Authors: Jonathan D. Ogland-Hand, Jeffrey M. Bielicki, Benjamin M. Adams, Ebony S. Nelson, Thomas A. Buscheck, Martin O. Saar, Ramteen Sioshansi

Some storage solutions give back more than we put in

Energy is lost when batteries charge. This is the case for most energy storage solutions – we get out less than we put in. Some storage solutions, however, give back more than we put in, such as hydro-power dams. In these dams, energy is stored as elevated water (potential energy), and rivers add more water (more energy). An international team of researchers recently described an underground storage solution which could more than double the electricity put in and also help reduce CO2 in the atmosphere.

Continue reading “Doubling Electricity Production by Storing it!”