Unexpected consequence of permafrost thaw: potentially less methane released into the atmosphere

Authors: Clarice R. Perryman, Carmody K. McCalley, Avni Malhotra, M. Florencia Fahnestock, Natalie N. Kashi, Julia G. Bryce, Reiner Giesler, Ruth K. Varner

Permafrost is a blanket of soil that is frozen for more than two years and can trap its contents for hundreds to thousands of years. Now that permafrost soil is thawing. This is particularly significant in peatland permafrost because these wetlands sequester high amounts of carbon. As peatland permafrost degrades, methane emissions are expected to increase as the water table rises and provides a suitable environment for methane production by microbes.

Continue reading “Unexpected consequence of permafrost thaw: potentially less methane released into the atmosphere”

What Caused the Flood that (Possibly) Gave Rise to an Empire?

Featured image: The Yellow River Breaches its Course by Ma Yuan, Public Domain

Paper: Uranium isotopic constraints on the nature of the prehistoric flood at the Lajia site, China
Authors: Le Li, Jun Chen, David William Hedding, Yuanhe Fu, Maolin Ye, Gaojun Li

A small sand deposit might hold the key to dating the rise of China‚Äôs first dynasty. Continue reading “What Caused the Flood that (Possibly) Gave Rise to an Empire?”

How Algae Emissions Could Affect the Weather

Featured image by Jesse Allen and Robert Simmon, Public Domain

Paper: Unprecedented DMSP Concentrations in a Massive Dinoflagellate Bloom in Monterey Bay, CA
Authors: Ronald P. Kiene, Brent Nowinski, Kaitlin Esson, Christina Preston, Roman Marin III, James Birch, Christopher Scholin, John Ryan, and Mary Ann Moran

Tiny marine organisms have been showing up in higher and higher numbers in bodies of water. These organisms also emit sulfur-containing compounds – and if they emit enough sulfur, their emissions could affect the climate. Continue reading “How Algae Emissions Could Affect the Weather”