The role of carbon in a changing Arctic

Paper: Freshening of the western Arctic negates anthropogenic carbon uptake potential

Authors: R.J. Woosley and F.J. Millero

Journal: Limnology and Oceanography

As human generated emissions of carbon dioxide continue to increase, scientists seek to understand the potential for ‘sinks’, or places that the excess CO2 can move in the global carbon cycle, to take up and store some of the increased emissions. Understanding how these carbon sinks may react to increasing global emissions helps to better predict both the rate of atmospheric increase in the future and the potential response of global ecosystems, including major sinks in forests and oceans.

Continue reading “The role of carbon in a changing Arctic”

What’s in the Water?

Paper: Contemporary limnology of the rapidly changing glacierized
watershed of the world’s largest
High Arctic lake

Authors: K. A. St. Pierre, V. L. St. Louis, I. Lehnherr, S. L. Schiff, D. C. G. Muir , A. J. Poulain, J. P. Smol, C. Talbot, M. Ma, D. L. Findlay, W. J. Findlay, S. E . Arnott, Alex S . Gardner

As glaciers recede in the arctic, the increase in meltwater may significantly impact downstream ecosystems. Glacial ice can hold thousands of years’ worth of dust, nutrients, and other materials that are released during melting. As the rate of melt increases with a warming climate, the release has the potential to increase nutrient flows and sediment loads, alter pH, and impact other physical, chemical, and biological aspects of downstream watersheds. These changes could negatively impact water clarity and ecosystem function in lakes, rivers, and the ocean.

Continue reading “What’s in the Water?”