Smart boulders – can rolling stones gather landslide data?

Featured Image: The Araniko highway stretching towards Kodari – this was once the route to Lhasa. © Michel Royon / Wikimedia Commons

Paper: Development of smart boulders to monitor mass movements via the Internet of Things: a pilot study in Nepal

Authors: Dini, B., Bennett, G. L., Franco, A. M. A., Whitworth, M. R. Z., Cook, K. L., Senn, A., and Reynolds, J. M.

Nepal straddles the Himalayan arc – the collision boundary of the Indian and the Eurasian tectonic plates that crumbled to form the highest mountains in the world, the Himalayas. Its precarious location makes it among the most disaster-prone countries in the world. Its landscape has been shaped, and continues to be shaped by seismic activity – from landslides and earthquakes, to glacial lake outburst floods (GLOFs) where the glacier ice or rock debris at the periphery of a glacial lake break off, resulting in severe floods downslope.

Driving out from Kathmandu city towards Bhaktapur, towards Kodari at the Nepal-China border, the landscape transitions from pagoda-style temples, to settlements, further on to a bleak, boulder-strewn landscape. This is the Araniko highway, built on an old yak track, running alongside the Bhote Koshi river, known to the locals as a difficult, dangerous landscape prone to rockfalls and landslides, especially during the monsoons. Warning signs and steel wire mesh welded to the slopes to mitigate landslides define this stretch, and angular boulders mark where the valleys rise into mountains, and are testimony to the region’s disaster-prone legacy.

The Bhote Koshi river that flows along the Araniko highway is littered with boulders that have worked loose from the valley slopes.
Image credit: Gerd Eichmann (CC BY-SA)

Boulder movement downslope happens due to different kinds of landslides, ranging from abrupt, free-falling rocks to slower flow-like movements. Large boulders are a threat to life and infrastructure, and may amplify landslides when they move downslope or cause floods if they block a river channel. 

In fragile landscapes, understanding when and how boulders move downslope and into river networks could be essential to detecting hazards. A rolling stone or a boulder in this case gathers no moss, they say, but can it gather landslide data? A pilot study by Benedetta Dini et al., in the Bhote Koshi catchment, documents how technology can help detect land movement and find use as early warning systems.

Twenty-three long-range, wireless trackers were drilled into boulders along known landslide or debris flow channels. Movement could be triggered by different events including debris flow, large-scale events or collisions. The sensors were programmed to send routine GPS locations every 24 hours, and an accelerometer would report when the boulder moves. A camera was also set up with a field views across the channels to acquire an image every 30 min. Via image sequences, the location of the sensor-embedded boulders are able to compare to prominent trees to identify and validate the movement data. Based on changes in tilt and displacement of boulders, corresponding to movement within a mass of rocks or downslope respectively, the study found that the sensors could successfully detect both slow and rapid movements. 

In conclusion, despite technical difficulties which could be a focus for future research, smart boulders have good potential as weather-proof, long-term, real-time, cost-effective monitoring tools, not just in Nepal but in other landslide-prone areas across the world.


Smart boulders – can rolling stones gather landslide data? by Devayani Khare is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Antarctic seafloor oxygen is diminishing–and glaciers may be to blame

Featured Image: Iceberg floating through thin sea ice. Image courtesy NASA ICE, used with permission.

Paper: Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy

Authors: Ulrike Braeckman, Francesca Pasotti, Ralf Hoffmann, Susana Vázquez, Angela Wulff, Irene R. Schloss, Ulrike Falk, Dolores Deregibus, Nene Lefaible, Anders Torstensson, Adil Al-Handal, Frank Wenzhöfer, Ann Vanreusel

Nothing compares to the ethereal beauty of a clear lake. Looking down, you can see a whole world flourishing below: plants, fish, and critters. Compare that to a cloudy, or turbid, lake and suddenly you may feel very small, worried about what’s lurking beneath you. New research shows that the Antarctic ocean is transitioning from clear to turbid water, with big implications for ocean ecosystems.

Continue reading “Antarctic seafloor oxygen is diminishing–and glaciers may be to blame”

Rust to the Rescue?

Featured Image: Shewanella putrefaciens CN-32 (a microbe capable of eating iron) on hematite (a rock containing iron). Image courtesy Environmental Molecular Sciences Laboratory (EMSL). Used with permission.

Paper: Organic matter mineralization in modern and ancient ferruginous sediments

Authors: André Friese, Kohen Bauer, Clemens Glombitza, Luis Ordoñez, Daniel Ariztegui Verena B. Heuer, Aurèle Vuillemin, Cynthia Henny, Sulung Nomosatryo, Rachel Simister Dirk Wagner, Satria Bijaksana, Hendrik Vogel, Martin Melles, James M. Russell, Sean A. Crowe, Jens Kallmeyer

Just as a crow may use a rock to crack a nut, certain microbes can use solid iron to crack open methane.  This consumption limits the amount of methane lost from lakes into the atmosphere, making it a crucial process in mitigating production of greenhouse gasses.  These microbes are abundant in freshwater sediments, and their specialized mechanism for cracking open methane is most likely one of the oldest metabolisms on Earth, providing a modern-day window into the past.

Continue reading “Rust to the Rescue?”

Will California get more precipitation in future winters?

Featured image of a road in Death Valley in California by jplenio on Pixabay

Paper: Winter Precipitation Changes in California Under Global Warming: Contributions of CO2, Uniform SST Warming, and SST Change Patterns
Authors: L. Dong and L. R. Leung

As with any job tasked with predicting the future, climate scientists have a tough but important responsibility: understand how the climate will be different at the end of the century. Predicting future climate is especially critical in areas with large, vulnerable populations and that grow a large part of the food supply. California, for example, has a population of over 39 million and is a source of two-thirds of the fruits and one-third of the vegetables grown in the US. Changes to its climate will impact not only its own residents but also the population and economy of the whole country.

Continue reading “Will California get more precipitation in future winters?”

Oxia Planum: ExoMars 2022 Landing Site

Featured Image: Artist’s impression of ESA’s ExoMars rover ‘Rosalind Franklin’ on the surface of Mars. Credit: ESA.

Paper: Oxia Planum: The Landing Site for the ExoMars “Rosalind Franklin” Rover Mission: Geological Context and Prelanding Interpretation

Authors: Quantin-Nataf et al., 2021

We are entering a new dawn of Mars exploration: Perseverance rover touched down on Mars earlier this year, which marks the start of what will be a decade-long effort to return samples from Mars. In 2022 the European Space Agency (ESA) will launch the ExoMars rover, which will team up with the ExoMars Trace Gas Orbiter (TGO) to find evidence of past or present life on Mars.

Continue reading “Oxia Planum: ExoMars 2022 Landing Site”

Are we star dust?

Paper: Amino acid abundances and compositions in iron and stony‐iron meteorites

Authors: Jamie E. Elsila, Natasha M. Johnson, Daniel P. Glavin, José C. Aponte, Jason P. Dworkin

All known life on Earth relies on amino acids. Many important biomolecules like proteins are made up of them. Scientists were surprised when they found these molecules, which are so strongly connected to living systems, in meteorites. How amino acids form in non-biological systems is still not entirely understood and is closely tied to the question of how life emerged on our young planet.

Continue reading “Are we star dust?”

Geologists might have just solved a sixty year old Russian mystery

Featured image: Soviet authorities investigate a mangled tent involved in the Dyatlov Pass Incident. This work is in the public domain and is not an object of copyright according to article 1259 of Book IV of the Civil Code of the Russian Federation No. 230-FZ of December 18, 2006.

Paper: Gaume, J., Puzrin, A.M. Mechanisms of slab avalanche release and impact in the Dyatlov Pass incident in 1959. Commun Earth Environ 2, 10 (2021). https://doi.org/10.1038/s43247-020-00081-8

In 1959, a group of nine hikers led by Igor Dyatlov trekked through the Ural Mountains in Eastern Russia on a skiing trip. After no word by telegram from the hikers for eight days, their families grew nervous and demanded a search and rescue effort. Over two weeks after the hikers planned contact with their base camp, investigators located an abandoned and mangled tent on the slope of Kholat Syakhl (“Dead Hill” in the local dialect of Mansi). 

Continue reading “Geologists might have just solved a sixty year old Russian mystery”

Adrift along the Sundarbans mangroves, east India

Mid March 2021, I set out with 2 other wildlife enthusiasts to explore the Sundarbans delta in east India. The 3-hour journey from Kolkata city, on a busy road fringed by industrial towns tapered off at Gadkhali port – civilization’s last ‘land’ frontier before the largest  continuous mangrove stretch in the world. We arrived after dusk, boarded our boat (with a crew of 2 naturalists, 3 boatmen, and a chef!), and were adrift upon dark waterways guided by twinkling village lights. In our haste, we thought little of just how ‘remote’ this wilderness was. 

Continue reading “Adrift along the Sundarbans mangroves, east India”

What Lies Beneath: Tracing Magma Interactions Within Earth’s Crust

Featured Image: Yosemite National Park, California, USA by Thomas H. from Pixabay 

Paper: Feldspar recycling across magma mush bodies during the voluminous Half Dome and Cathedral Peak stages of the Tuolumne intrusive complex, Yosemite National Park, California, USA

Authors: Louis F. Oppenheim, Valbone Memeti, Calvin G. Barnes, Melissa Chambers, Joachim Krause, and Rosario Esposito

Earth’s landscapes provide evidence of the geological processes which have shaped it over the past 4 billion years.  The Earth’s crust, our planet’s outermost layer, preserves an extensive record of these processes. Within the crust igneous rocks which were once molten at depth and fed active volcanic eruptions, preserve evidence of the inner workings of volcanoes. These inner workings or “magmatic plumbing systems” are the focus of recent work by Oppenheim et al. (2021). In this work, Oppenheim and co-authors studied the crystal record of fossilized plumbing systems in order to provide new insights into the storage conditions and transport mechanisms of magma within Earths’ crust.

Continue reading “What Lies Beneath: Tracing Magma Interactions Within Earth’s Crust”

Do Hurricanes Choke on Dust?

Satellite image showing plume of dust drifting from north Africa

Paper – Influence of Saharan Dust on the Large‐Scale Meteorological Environment for Development of Tropical Cyclone Over North Atlantic Ocean Basin
Authors – Yue Sun and Chuanfeng Zhao

Several times a year, strong gusts blow dust from the Sahara Desert westwards over the Atlantic Ocean. When the plume reaches the Caribbean, many residents experience respiratory irritation and allergic reactions to the dust. On particularly bad days, those with sensitivities to or certain pre-existing conditions are urged to stay indoors. The haze reduces visibility and casts a dull filter over the landscape.

Continue reading “Do Hurricanes Choke on Dust?”