Nature’s Secret Weapon: How Nature-based Solutions Can Tackle Climate Change and More

Featured Image: Two striking illustrations of the river Culm catchment in the UK. Created by local artist Richard Carman, the left image shows the existing (degraded) situation, while the right image depicts a co-created nature-based solutions scenario developed in collaboration with local stakeholders, including farmers and landowners, as part of the Co-Adapt project. These illustrations provide a clear visual representation of how nature-based solutions can be used to address environmental challenges in the area.

Papers: Soil carbon sequestration impacts on global climate change and food security; Climate-smart Soils; IPCC (2014) Report on Mitigation of Climate Change; Synthesizing US River Restoration Efforts; Limited potential of no-till agriculture for climate change mitigation; Sequestering carbon in soils of agro-ecosystems; Crop Residue Removal Impacts on Soil Productivity and Environmental Quality; Towards an EU research and innovation policy agenda for nature-based solutions & re-naturing cities.

Authors: Rattan Lal, Keith Paustian, Johannes Lehmann, Stephen Ogle, David Reay, Philip G. Robertson, Pete Smith, Humberto Blanco-Canqui and more.

Are you worried about the impact of climate change on our planet and wondering what you can do to help? Look no further than nature itself, because nature-based solutions may just hold the key to mitigating its effects through soil carbon sequestration.

Climate change is an ongoing problem that poses a significant threat to our planet. Many strategies have been proposed to mitigate climate change, including renewable energy, carbon capture and storage, and nature-based solutions (NbS). Among these, NbS have gained considerable attention because they offer a range of benefits, including reducing greenhouse gas emissions, mitigating the impact of natural disasters such as floods and droughts, and improving biodiversity.

But what are NbS, and how can they help in mitigating climate change? Nature-based solutions are interventions that work with nature to address environmental challenges. These solutions involve restoring, protecting, and managing ecosystems such as forests, wetlands, and grasslands. One of the significant benefits of NbS is soil carbon sequestration, which refers to the process of capturing carbon dioxide from the atmosphere and storing it in soil.

Soil carbon sequestration is a powerful tool to mitigate climate change because it can store carbon for decades or even centuries. According to the Intergovernmental Panel on Climate Change (IPCC), soil carbon sequestration can reduce atmospheric carbon dioxide concentrations by up to 15% by 2050. This approach has gained traction in Europe, where various projects have been implemented to sequester carbon in soils.

For example, in the UK, the Farm Carbon Cutting Toolkit is a non-profit organization that works with farmers to adopt practices that increase soil carbon levels. One such practice is the use of cover crops, which are planted between cash crops to prevent soil erosion, improve soil health, and increase carbon sequestration. According to the organization’s website, “the planting of cover crops, such as clover, can increase soil organic matter and carbon content by up to 15% over ten years.”

Similarly, in France, the 4 per 1000 initiative aims to increase soil carbon content by 0.4% per year. This initiative focuses on a range of NbS, such as agroforestry, conservation agriculture, and the use of biochar. According to a study published in the journal Nature, increasing soil carbon by 0.4% per year could offset around 3.5 billion tonnes of carbon dioxide emissions.

Soil carbon sequestration through NbS not only helps mitigate climate change but also has several co-benefits. For example, it can improve soil health, increase agricultural productivity, and reduce the risk of natural disasters such as floods and droughts. As Dr. Pauline Chivenge, a soil scientist at the University of Zimbabwe, explains:

”If we improve soil health, we can improve crop yields, and that translates into better nutrition and food security for communities”

However, it’s important to note that soil carbon sequestration alone cannot solve the climate crisis. We also need to reduce our reliance on fossil fuels, promote renewable energy, involve the local community and implement other sustainable practices. Nonetheless, soil carbon sequestration is an important piece of the puzzle and should be considered as part of a comprehensive climate action plan.

In conclusion, nature-based solutions such as soil carbon sequestration offer a promising strategy for mitigating climate change while providing multiple benefits. By implementing NbS practices such as agroforestry, cover crops, and conservation agriculture, we can increase soil carbon levels, improve soil health, and enhance biodiversity. By implementing NbS practices, we can all contribute to mitigating the impacts of climate change and promoting sustainable development. Here are some ways you can get involved:

  1. Educate yourself: Learn about the benefits and potential of nature-based solutions in addressing environmental challenges. Read about case studies, best practices, and research on nature-based solutions.
  2. Advocate for nature-based solutions: Speak up about the benefits of nature-based solutions in conversations with family, friends, colleagues, and community members. Encourage local leaders to consider nature-based solutions in planning and decision-making.
  3. Support conservation efforts: Donate to conservation organizations or volunteer for conservation efforts in your community. Protecting natural areas can support nature-based solutions and the ecosystem services they provide.
  4. Plant trees and native plants: Trees and native plants play an important role in sequestering carbon, improving air and water quality, and supporting biodiversity. Planting trees and native plants in your yard or community can support nature-based solutions.
  5. Support sustainable agriculture: Sustainable agriculture practices, such as agroforestry and regenerative agriculture, can support nature-based solutions by promoting soil health, biodiversity, and carbon sequestration.
  6. Participate in citizen science: Citizen science projects can provide valuable data for understanding environmental challenges and the effectiveness of nature-based solutions. Participate in citizen science projects in your community or online
  7. Support green infrastructure: Green infrastructure, such as green roofs and bioswales, can support nature-based solutions by reducing stormwater runoff and improving air quality. Encourage your community to invest in green infrastructure or start from your own garden by removing paved surfaces and replacing them with greenery, make your own compost etc..
  8. Support policies and funding for nature-based solutions: Policy changes and funding can help support the uptake of nature-based solutions at local and national levels. Support policies and funding initiatives that promote nature-based solutions.

By taking action and supporting NbS practices, we can all make a difference in the fight against climate change. As Dr. Bedford, a climate change expert, reminds us:

”We all have a role to play in addressing the challenges of climate change, and implementing nature-based solutions is one of the most effective ways to do so.”


Nature’s Secret Weapon: How Nature-based Solutions Can Tackle Climate Change and More by Borjana Bogatinoska is licensed under a Creative Commons Attribution 4.0 International License.

One Lake, Two Lake; Green Lake, Blue Lake

A large lake divided by a shallow spit of land, water to the left of the spit appears green and murky, the right side clear and blue.

Paper: Shallow lakes under alternative states differ in the dominant
greenhouse gas emission pathways

Authors: Sofia Baliña, María Laura Sánchez, Irina Izaguirre, Paul A. del Giorgio (2023)

Imagine some of the most dynamic, ecologically important lakes in the world…. you are picturing a deep, wide lake, not something knee deep and murky, or so full of aquatic plants you can’t see the bottom, right? Well, perhaps you should; while they don’t always make the most inviting swimming holes, small, shallow lakes have an outsized importance in the cycling of carbon and other nutrients through the landscape. 

Shallow depths tend to lead to warmer temperatures and more concentrated growth of algae and aquatic plants, not always the most desirable features for recreation.  But what these lakes might lack aesthetically, they make up for with a massive contribution to the global carbon cycle. Combine the abundance of small lakes with a tendency for frequent mixing of the water column, and high rates of organic input from the surrounding watershed and small lakes pack a big punch in terms of cycling nutrients, including carbon, through pathways in both the water and lake bottom sediments. 

These carbon cycling power houses are tricky to pin down because they can operate in what scientists call two different ‘stable states’: a murky, turbid state, dominated by algal growth that blocks the sunlight from reaching the bottom, and a clearwater state where plants anchored in the lake bottom sediments are dominant. A number of natural events, including floods, droughts, or changes in surrounding vegetation can lead to a ‘flip’ between states. Human activity can lead to a ‘flip’ as well, for example, in the Pampean Plains of Argentina, agricultural practices have added excess nutrients to the system, which tends to push lakes toward the murky, turbid state. The two lake states not only look different from the surface, but also have important differences in rates of photosynthesis, burial of organic material, and circulation in the water.

Knowing the importance of small lakes to global carbon cycling, a team in Argentina did a detailed investigation on how the different states impact carbon cycling and green house gas emissions.  By monitoring sets of turbid and clear shallow lakes in the Pampean Plains over the course of a year, they found important seasonal differences in rates of carbon dioxide (CO2) diffusion into and out of water column, and in the flux of methane (CH4) from lake bottom sediments.

Through monitoring instrumentation suspended in the air above the lakes, as well as measurements taken in the water and sediments, researchers were able to observe weather-driven seasonal changes. The biggest differences were between winter and spring: cold, clear lakes tended to act as CO2 source. When the lakes warmed up, they started to move gas from the water into the atmosphere and became carbon sinks, while turbid lakes did the opposite. 

Figure 3 from Baliña et al. (2022) showing the different pathways and relative ratios for carbon flow in clear-water, vegetated lakes (on the left) compared to more green, or turbid, lakes with heavy algal growth on the right. In total, the total greenhouse gas emissions (or CO2 equivalents) for both lake states was similar, but came from different pathways in the lake.

Over an annual cycle, clear lakes had as much as 5 times the CO2 emissions to the atmosphere as compared to turbid lakes, mainly attributed to the vegetation. Turbid lakes, however, had a higher annual emission of CH4. On balance, the two groups of lakes had roughly the same total contribution to green house gas fluxes, but the seasonal variability and differences in carbon pathway are important to understand as we continue to learn more about these dynamic ecosystems and how they change over time.


One Lake, Two Lake; Green Lake, Blue Lake by Avery Shinneman is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Our enduring fascination with groundwater springs

Landscape with mountains in the distance and trees, rocks, and a path in the foreground

Featured Image: The middle zone of the Gerecse Mountains in Hungary via Wikimedia Commons. Public Domain.

Article: Springs regarded as hydraulic features and interpreted in the context of basin-scale groundwater flow
Authors:
Tóth, Á., Kovács, S., Kovács, J., & Mádl-Szőnyi, J.

O Fount Bandusia, brighter than crystal,
worthy of sweet wine and flowers,
tomorrow shalt thou be honoured with
a firstling of the flock whose brow,

with horns just budding, foretokens love
and strife. Alas! in vain; for this
offspring of the sportive flock shall
dye thy cool waters with its own red blood.

Thee the fierce season of the blazing
dog-star cannot touch; to bullocks wearied
of the ploughshare and to the roaming flock
thou dost offer gracious coolness.

Thou, too, shalt be numbered among the
far-famed fountains, through the song I
sing of the oak planted o’er the grotto
whence thy babbling waters leap.

Horace (56BC-8BC) Ode 3.13

This ode by the Roman poet Horace is part of a long tradition of art and literature honoring groundwater springs, called ‘founts’ or ‘fountains’ in this translation. It is no wonder why: they can provide high-quality water that continues to flow even in the heat of a Mediterranean summer, “the fierce season of the blazing dog-star,” when surface water is often not available. But where does this water come from? Is it from large underground lakes, as the Romans suspected? Some of the same characteristics Horace names in this poem can help scientists figure this out.

Continue reading “Our enduring fascination with groundwater springs”

The surprising effects rivers have on our atmosphere

Featured Image: Rio Bermejo meeting up with the Paraguay River, on the boarder of Formosa and Chaco Provinces.  Image by Mapio. Used with permision.

Paper: Fluvial organic carbon cycling regulated by sediment transit time and mineral protection

Authors: Marisa Repasch, Joel S. Scheingross, Niels Hovius, Maarten Lupker, Hella Wittmann, Negar Haghipour, Darren R. Gröcke, Oscar Orfeo, Timothy I. Eglinton, and Dirk Sachse

In our current era of rapid climate change, it is critical we understand how every aspect of the Earth system affects carbon cycling.  New work by Marisa Repasch and colleagues shows that rivers, under the right conditions, might be able to sequester more carbon in the sediments than released into the atmosphere. However, these findings may reveal how human impacts to rivers will likely increase the amount of carbon released to the atmosphere.

Continue reading “The surprising effects rivers have on our atmosphere”

What can a delta’s history tell us about groundwater’s future?

Feature image: Mosiac of the the Ganges Delta in false color created with imagery from the Sentinal 2 satilite. CC-By Annamaria Luongo, via Wikimedia Commons


Article: Linking the Surface and Subsurface in River Deltas—Part 2: Relating Subsurface Geometry to Groundwater Flow Behavior
Authors: Xu, Z., Hariharan, J., Passalacqua, P., Steel, E., Paola, C., & Michael, H. A.

Deltas are striking features on Earth’s surface, where rivers meet large water bodies. Their flow spreads out into many channels, depositing the sediment they have been carrying, potentially since their headwaters. This sediment creates and sustains the delta, which can be hundreds of miles across. Beyond being mesmerizing, deltas are essential to human civilization, past and present. Nearly half a billion people live on deltas around the world, where the deposited sediment hosts some of the most fertile agricultural land available.

Continue reading “What can a delta’s history tell us about groundwater’s future?”

Ancient trees tell the story of modern climate change

Featured Image: Larch trees.  Image courtesy North Cascades National Park, used with permission.

Paper: Spring arctic oscillation as a trigger of summer drought in Siberian subarctic over the past 1494 years

Authors: Olga V. Churakova Sidorova, Rolf T. W. Siegwolf, Marina V. Fonti, Eugene A. Vaganov, Matthias Saurer

Seemingly straight out of a fairytale, ancient trees are able to convey details about Earth’s complex history to the scientists willing and able to listen.  Deep in the Siberian Arctic lie the secrets of past weather events, ocean currents, and droughts that occurred thousands of years ago, locked away in petrified wood and in the oldest living larch trees.  We often hear in the news how the Siberian forest is victim to extreme drought and fire—something that is new as of the recent century.  But how “new” are these events, and what exactly is perpetuating this new cycle? 

Continue reading “Ancient trees tell the story of modern climate change”

Landscapes get depressed too: limestone depressions pattern a wetland landscape

Aerial view of the Big Cypress National Preserve

Feature Image: Limestone depressions cover the landscape in the Big Cypress National Preserve in Florida, USA. (C) Google.

Article: Competition Among Limestone Depressions Leads to Self‐Organized Regular Patterning on a Flat Landscape
Authors:
Dong, X., Murray, A. B., & Heffernan, J. B.

Patterns are abundant in nature, from evenly spaced termite mounds and vegetation patches to repeating series of ridges and valleys to sand dunes. The questions of why these patterns are so uniform and why they are found in disparate settings has been the subject of intense scientific interest over the last decades. Mathematical tools have given scientists the ability to study these “complex systems,” where behavior of the whole system emerges from interactions between smaller parts. While many different systems have been studied, recently researchers from the Duke University and the University of California at Davis investigated a patterned landscape with mysterious origins: the large, evenly spaced depressions in limestone bedrock that cover nearly 3000 square kilometers of the Big Cypress National Preserve in the Florida Everglades.

Continue reading “Landscapes get depressed too: limestone depressions pattern a wetland landscape”

Wet Feet? No problem: sandy humid forests grow best with access to groundwater

Pine forest in Governor Thompson State Park, WI, USA

Feature Image: Pine forest in Governor Thompson State Park, WI, USA. Yinan Chen, Public Domain, via Wikimedia Commons

Article: Groundwater subsidizes tree growth and transpiration in sandy humid forests
Authors: D. M. Ciruzzi and S. P. Loheide

Drought is often in the news these days, especially in places with arid and semi-arid climates where water is already scarce. While ecosystems have adapted over millennia to cope with dry climates and seasonal droughts, the increasing intensity and frequency of drought due to climate change and human demand for water can pose significant threats to ecosystem health and survival.

Continue reading “Wet Feet? No problem: sandy humid forests grow best with access to groundwater”

Water in the rocky layer cake beneath us

Konza Prairie Biological Station

Featured Image: Konza Prairie near Manhattan, Kansas, USA. Credit: David Litwin.

Paper: Toward a new conceptual model for groundwater flow in merokarst systems: Insights from multiple geophysical approaches.

Authors: Sullivan, P. L., Zhang, C., Behm, M., Zhang, F., & Macpherson, G. L.

The dissolution of limestone by atmospheric water forms a set of recognizable features collectively known as karst: enormous caves with stalactites and stalagmites, sinkholes, chasms, and narrow, towering  columns of rock. The hydrology of karst landscapes is often incredibly complex, as water can flow rapidly through dissolution-formed conduits below ground, and topography offers fewer clues to groundwater flow than in most other landscapes. While dramatic karstic landscapes have received a lot of scientific attention, even smaller limestone units can host karst features that affect hydrology.

Continue reading “Water in the rocky layer cake beneath us”

Looking below ground for secrets to drought resilience

Santa Ynez Mountains

Featured image: Oak savanna near the Santa Ynez mountains in California. Clyde Frogg, public domain.

Paper: Low Subsurface Water Storage Capacity Relative to Annual Rainfall Decouples Mediterranean Plant Productivity and Water Use From Rainfall Variability

Authors: Hahm, W. J., Dralle, D. N., Rempe, D. M., Bryk, A. B., Thompson, S. E., Dawson, T. E., & Dietrich, W. E.

Between 2011 and 2016, a severe drought killed over 100 million trees in California. However, not all places responded to this drought in the same way. In some locations, trees and other plants seemed hardly affected, while in other places mortality was widespread. What caused this difference? In a 2019 study, Hahm and colleagues explored the role that water storage in ecosystems has on their resilience to drought. With extreme droughts becoming more common due to climate change, understanding why certain areas are more vulnerable is important for making predictions and improving forest management.

Continue reading “Looking below ground for secrets to drought resilience”