The growing threat of hurricane-associated flooding in southeastern Texas

Feature Image: Flooding in Port Arthur, Texas on August 31, 2017 from Hurricane Harvey. Image from Wikimedia.

Article: Assessment of Future Flood Hazards for Southeastern Texas: Synthesizing Subsidence, Sea‐Level Rise, and Storm Surge Scenarios
Authors: M. M. Miller and M. Shirzaei

Residents of southeastern Texas are not strangers to hurricane landfalls, including Hurricane Harvey in 2017, which caused 80 fatalities and damaged over 80,000 houses without flood insurance. With the population of coastal areas in the United States expected to continue to grow, understanding how hurricane-associated flooding will change in the future is essential for informing policy decisions and flood resilience strategies. Unfortunately southeastern Texas is facing a triple threat of factors that increase the risk of flooding during hurricane landfalls: land subsidence, sea level rise, and more intense hurricanes.

Continue reading “The growing threat of hurricane-associated flooding in southeastern Texas”

Antarctic seafloor oxygen is diminishing–and glaciers may be to blame

Featured Image: Iceberg floating through thin sea ice. Image courtesy NASA ICE, used with permission.

Paper: Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy

Authors: Ulrike Braeckman, Francesca Pasotti, Ralf Hoffmann, Susana Vázquez, Angela Wulff, Irene R. Schloss, Ulrike Falk, Dolores Deregibus, Nene Lefaible, Anders Torstensson, Adil Al-Handal, Frank Wenzhöfer, Ann Vanreusel

Nothing compares to the ethereal beauty of a clear lake. Looking down, you can see a whole world flourishing below: plants, fish, and critters. Compare that to a cloudy, or turbid, lake and suddenly you may feel very small, worried about what’s lurking beneath you. New research shows that the Antarctic ocean is transitioning from clear to turbid water, with big implications for ocean ecosystems.

Continue reading “Antarctic seafloor oxygen is diminishing–and glaciers may be to blame”

Rust to the Rescue?

Featured Image: Shewanella putrefaciens CN-32 (a microbe capable of eating iron) on hematite (a rock containing iron). Image courtesy Environmental Molecular Sciences Laboratory (EMSL). Used with permission.

Paper: Organic matter mineralization in modern and ancient ferruginous sediments

Authors: André Friese, Kohen Bauer, Clemens Glombitza, Luis Ordoñez, Daniel Ariztegui Verena B. Heuer, Aurèle Vuillemin, Cynthia Henny, Sulung Nomosatryo, Rachel Simister Dirk Wagner, Satria Bijaksana, Hendrik Vogel, Martin Melles, James M. Russell, Sean A. Crowe, Jens Kallmeyer

Just as a crow may use a rock to crack a nut, certain microbes can use solid iron to crack open methane.  This consumption limits the amount of methane lost from lakes into the atmosphere, making it a crucial process in mitigating production of greenhouse gasses.  These microbes are abundant in freshwater sediments, and their specialized mechanism for cracking open methane is most likely one of the oldest metabolisms on Earth, providing a modern-day window into the past.

Continue reading “Rust to the Rescue?”

Will California get more precipitation in future winters?

Featured image of a road in Death Valley in California by jplenio on Pixabay

Paper: Winter Precipitation Changes in California Under Global Warming: Contributions of CO2, Uniform SST Warming, and SST Change Patterns
Authors: L. Dong and L. R. Leung

As with any job tasked with predicting the future, climate scientists have a tough but important responsibility: understand how the climate will be different at the end of the century. Predicting future climate is especially critical in areas with large, vulnerable populations and that grow a large part of the food supply. California, for example, has a population of over 39 million and is a source of two-thirds of the fruits and one-third of the vegetables grown in the US. Changes to its climate will impact not only its own residents but also the population and economy of the whole country.

Continue reading “Will California get more precipitation in future winters?”

Plants may help solve the climate crisis, but is there enough water for everyone?

Featured image: Sugarcane plantation to produce ethanol in Brazil by José Reynaldo da Fonseca on Wikipedia under CC BY 2.5.

Paper: Stenzel, F., Greve, P., Lucht, W. et al. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat Commun 12, 1512 (2021). https://doi.org/10.1038/s41467-021-21640-3

In order to mitigate the effects of the climate crisis, we must stay under a 1.5℃ average global temperature increase from pre-industrial levels. To help reach this goal, there is growing interest in “negative emission technologies”, which are methods of removing greenhouse gases, like carbon dioxide, from the atmosphere. These carbon capture technologies have been around since the 1970s, but the best carbon capture technology might be as simple as plants.  Fabian Stenzel and his team explain that cultivating fast-growing plant species, processing them into biomass, and capturing any emitted carbon dioxide therein, would actually result in negative emissions. Specifically, creating biomass through this method can capture upwards of 2 gigatons of carbon per year by 2050 (that’s close to the mass of 12 million blue whales). Burning this would also unlock an incredibly energy dense source of power. While burning the biomass would inevitably release carbon dioxide into the atmosphere, the process of growing it would drastically offset this by removing a much larger amount. However, one crucial question needs to be answered: will we have enough water to pull it off?

Continue reading “Plants may help solve the climate crisis, but is there enough water for everyone?”

How does climate change impact extreme cold outbreaks in the United States?

Featured image from CJ on Pixabay

Article: Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States
Authors: C. Zhou, A. Dai, J. Wang, and D. Chen

Questions about extreme cold outbreaks have been featured in the U.S. news recently, as a majority of the country experienced record-breaking cold temperatures during the week of February 8, 2021. Was this extreme cold related to climate change? Will we see more of these events in the future? As Texans faced extensive blackouts due to issues with electricity generation and transmission because of the cold, meteorologists and news reporters tried to answer these questions as best they could. But what does the latest climate science say about the link, if any, between extreme cold outbreaks and climate change?

Continue reading “How does climate change impact extreme cold outbreaks in the United States?”

The Fate of Aquifers, and What Controls It

Paper: Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers

Authors: Wen-Ying Wu, Min-Hui Lo, Yoshihide Wada, James S. Famiglietti, John T. Reager, Pat J.-F. Yeh, Agnès Ducharne, and Zong-Liang Yang

The ground I’m standing on feels solid, but it’s really full of porous rocks. The holes in these rocks are all different sizes, and water can flow through and between those with larger holes. Together, bodies of rocks that are saturated with water form aquifers. As groundwater supplies more than a third of the water humans use, groundwater and the aquifers that contain it are vital. They are especially vital in mid-latitude arid and semi-arid regions without enough surface water. In their recent research, Wen-Ying Wu and their collaborators studied the future of aquifers in such regions and what factors control it.

Continue reading “The Fate of Aquifers, and What Controls It”

Will Atmospheric Rivers Shift from Helpful to Harmful due to Climate Change?

Feature Image by mirobo on Pixabay

Article: The Shifting Scales of Western U.S. Landfalling Atmospheric Rivers Under Climate Change
Authors: Rhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O’Brien, T. A., Patricola, C. M., Ullrich, P. A., Wehner, M., and Zhou, Y.

While residents of the West Coast of the United States usually don’t have to worry about hurricanes, snow storms, or tornadoes, every winter they do experience extreme weather events known as atmospheric rivers. Atmospheric rivers are plumes of highly concentrated water vapor in the atmosphere. When they move over land, they can produce very heavy rainfall that can cause flooding and even trigger landslides. However, atmospheric rivers are not all bad; in fact, some might even say they’re essential. They provide up to half of California’s rainfall every year, which is beneficial for agriculture and water supply. Like all weather events, atmospheric rivers are impacted by climate change, so how will they be different in a few decades? This question is essential for water resource managers and regular residents of the West Coast, since atmospheric rivers can both help and harm their livelihoods.

Continue reading “Will Atmospheric Rivers Shift from Helpful to Harmful due to Climate Change?”

The role of carbon in a changing Arctic

Paper: Freshening of the western Arctic negates anthropogenic carbon uptake potential

Authors: R.J. Woosley and F.J. Millero

Journal: Limnology and Oceanography

As human generated emissions of carbon dioxide continue to increase, scientists seek to understand the potential for ‘sinks’, or places that the excess CO2 can move in the global carbon cycle, to take up and store some of the increased emissions. Understanding how these carbon sinks may react to increasing global emissions helps to better predict both the rate of atmospheric increase in the future and the potential response of global ecosystems, including major sinks in forests and oceans.

Continue reading “The role of carbon in a changing Arctic”

What’s in the Water?

Paper: Contemporary limnology of the rapidly changing glacierized
watershed of the world’s largest
High Arctic lake

Authors: K. A. St. Pierre, V. L. St. Louis, I. Lehnherr, S. L. Schiff, D. C. G. Muir , A. J. Poulain, J. P. Smol, C. Talbot, M. Ma, D. L. Findlay, W. J. Findlay, S. E . Arnott, Alex S . Gardner

As glaciers recede in the arctic, the increase in meltwater may significantly impact downstream ecosystems. Glacial ice can hold thousands of years’ worth of dust, nutrients, and other materials that are released during melting. As the rate of melt increases with a warming climate, the release has the potential to increase nutrient flows and sediment loads, alter pH, and impact other physical, chemical, and biological aspects of downstream watersheds. These changes could negatively impact water clarity and ecosystem function in lakes, rivers, and the ocean.

Continue reading “What’s in the Water?”